电子科技 ›› 2021, Vol. 34 ›› Issue (6): 50-55.doi: 10.16180/j.cnki.issn1007-7820.2021.06.009

• • 上一篇    下一篇

窄带舰船目标识别方法研究

张朋飞,魏存伟,刘先康,刘安然,杨欧,林永霖   

  1. 中国人民解放军海军七〇一工厂, 北京 100015
  • 收稿日期:2020-05-19 出版日期:2021-06-15 发布日期:2021-06-01
  • 作者简介:张朋飞(1991-),男,工程师。研究方向:雷达目标识别、大数据与人工智能。|魏存伟(1983-),男,高级工程师。研究方向:雷达目标识别、信号处理。|刘先康(1979-),男,博士后,高级工程师。研究方向:雷达目标识别、信号处理。
  • 基金资助:
    装发预研基金重点项目;海军“十三五”武器装备预研资助课题

Research on Ship Target Recognition Method of Narrowband Radar

ZHANG Pengfei,WEI Cunwei,LIU Xiankang,LIU Anran,YANG Ou,LIN Yonglin   

  1. The 701 Factory of the PLA Navy,Beijing 100015,China
  • Received:2020-05-19 Online:2021-06-15 Published:2021-06-01
  • Supported by:
    Key Projects of Advanced Research Fund of Equipment Development Department;Project of Naval “the Thirteenth Five-Year Plan” Weapon Equipment Pre Research Funding

摘要:

文中针对窄带雷达舰船目标识别问题,提出了一种窄带雷达舰船目标识别方法。该方法从窄带雷达回波信号中提取目标的感兴趣区域,基于感兴趣区域提取目标的期望、标准差、方差、中心矩特征。依据雷达舰船目标航迹信息提取目标姿态角,并将姿态角作为特征引入到分类器中。最后,利用支持向量机方法对窄带雷达舰船目标进行分类。通过建立的仿真数据进行识别效果测试,实验结果表明该方法对舰船大、中、小分类具有较高的识别率,说明该方法具有一定的工程应用价值。

关键词: 窄带雷达, 舰船分类, 感兴趣区域, 期望, 标准差, 方差, 中心矩, 姿态角, 支持向量机

Abstract:

A ship target recognition method based on narrowband radar is proposed in the present study. This method extracts the region of interest of the target from the echo signal of narrowband radar, then extracts the characteristics of expectation, standard deviation, variance and central moment of the target based on the region of interest. According to the track information of the radar ship target, the proposed method extracts the attitude angle of the target and introduces the attitude angle as the feature into the classifier. Finally, the narrowband radar ship target is classified using the support vector machine. The results show that the method has a high recognition rate for large, medium and small ship classification, and it has a certain engineering application value.

Key words: narrowband radar, ship classification, region of interest, expect, standard deviation, variance, central moment, attitude angle, support vector machine

中图分类号: 

  • TN957.52