[1] |
廖旎焕, 胡智宏, 马莹莹, 等. 电力系统短期负荷预测方法综述[J]. 电力系统保护与控制, 2011,39(1):147-152.
doi: 10.7667/j.issn.1674-3415.2011.01.028
|
|
Liao Nihuan, Hu Zhihong, Ma Yingying, et al. Review of the short-term load forecasting methods of electric power system[J]. Power System Protection and Control, 2011,39(1):147-152.
doi: 10.7667/j.issn.1674-3415.2011.01.028
|
[2] |
蒋小亮, 蒋传文, 彭明鸿, 等. 基于时间连续性及季节周期性的风速短期组合预测方法[J]. 电力系统自动化, 2010,34(15):75-79.
|
|
Jiang Xiaoliang, Jiang Chuanwen, Peng Minghong, et al. A short-term combination wind speed forecasting method considering seasonal periodicity and time-continuity[J]. Automation of Electric Power Systems, 2010,34(15):75-79.
|
[3] |
张健美, 周步祥, 林楠, 等. 灰色Elman神经网络的电网中长期负荷预测[J]. 电力系统及其自动化学报, 2013,25(4):145-149.
|
|
Zhang Jianmei, Zhou Buxiang, Lin Nan, et al. Prediction of mid-long term load based on gray elman neural networks[J]. Proceedings of the CSU-EPSA, 2013,25(4):145-149.
|
[4] |
万昆, 柳瑞禹. 区间时间序列向量自回归模型在短期电力负荷预测中的应用[J]. 电网技术, 2012,36(11):77-81.
|
|
Wan Kun, Liu Ruiyu. Application of interval time-series vector autoregressive model in short-term load forecasting[J]. Power System Technology, 2012,36(11):77-81.
|
[5] |
周德强, 武本令. 灰色BP神经网络模型的优化及负荷预测[J]. 电力系统保护与控制, 2011,39(21):65-69.
|
|
Zhou Deqiang, Wu Benling. Optimization and power load forecasting of gray BP neural network model[J]. Power System Protection and Control, 2011,39(21):65-69.
|
[6] |
房乐楠, 何腾鹏, 刘宇红. 一种改进型PSO算法在SVM参数寻优种的应用[J]. 电子科技, 2018,31(6):17-19,31.
|
|
Fang Lenan, He Tengpeng, Liu Yuhong. Application of an improved PSO algorithm in SVM parameter optimization[J]. Electronic Science and Technology, 2018,31(6):17-19,31.
|
[7] |
王奔, 冷北雪, 张喜海. 支持向量机在短期负荷预测中的应用概况[J]. 电力系统及其自动化学报, 2011,23(4):115-121.
|
|
Wang Ben, Leng Beixue, Zhang Xihai. Application profiles of support vector machine in short-term load forecasting[J]. Procceedings of the CSU-EPSA, 2011,23(4):115-121.
|
[8] |
傅美平, 马红伟, 毛建容. 基于相似日和最小二乘支持向量机的光伏发电短期预测[J]. 电力系统保护与控制, 2012,40(16):65-69.
doi: 10.7667/j.issn.1674-3415.2012.16.011
|
|
Fu Meiping, Ma Hongwei, Mao Jianrong. Short-term photovoltaic power forecasting based on similar days and least square support vector machine[J]. Power System Protection and Control, 2012,40(16):65-69.
doi: 10.7667/j.issn.1674-3415.2012.16.011
|
[9] |
陈刚, 闫飞, 王烨, 等. 基于参数优化的最小二乘支持向量机状态估计方法[J]. 电力系统保护与控制, 2011,39(19):83-88.
doi: 10.7667/j.issn.1674-3415.2011.19.014
|
|
Cheng Gang, Yan Fei, Wang Ye, et al. State estimate based on parameter-optimized least square support vector machines[J]. Power System Protection and Control, 2011,39(19):83-88.
doi: 10.7667/j.issn.1674-3415.2011.19.014
|
[10] |
李霄, 王昕, 郑益慧, 等. 基于改进最小二乘支持向量机和预测误差校正的短期风电负荷预测[J]. 电力系统保护与控制, 2015,43(11):63-69.
doi: 10.7667/j.issn.1674-3415.2015.11.010
|
|
Li Xiao, Wang Xin, Zheng Yihui, et al. Short-term wind load forecasting based on improved LSSVM and error forecasting correction[J]. Power System Protection and Control, 2015,43(11):63-69.
doi: 10.7667/j.issn.1674-3415.2015.11.010
|
[11] |
吴景龙, 杨淑霞, 刘承水. 基于遗传算法优化参数的支持向量机短期负荷预测方法[J]. 中南大学学报(自然科学版), 2009,40(1):180-184.
|
|
Wu Jinglong, Yang Shuxia, Liu Chengshui. Parameter selection for support vector machines based on genetic alrorithms to short-term power load forecasting[J]. Journal of Central South University(Science and Technology Edition), 2009,40(1):180-184.
|
[12] |
Wang W C, Xu D M, Chau K W, et al. Improved annual rainfall-runoff forecasting using PSO-SVM model based on EEMD[J]. Journal of Hydroinformatics, 2013,15(4):1377-1390.
doi: 10.2166/hydro.2013.134
|
[13] |
龙文, 梁昔明, 龙祖强, 等. 基于改进蚁群算法优化LSSVM短期负荷预测[J]. 中南大学学报(自然科学版), 2011,42(11):3408-3414.
|
|
Long Wen, Liang Ximing, Long Zuqiang, et al. Parameters selection for LSSVM based on modified ant colony optimization in short-term load forecasting[J]. Journal of Central South University(Science and Technology), 2011,42(11):3408-3414.
|
[14] |
费腾, 张立毅, 陈雷. 混合Levy变异与混沌变异的改进人工鱼群算法[J]. 计算机工程, 2016,42(7):146-152,158.
doi: 10.3969/j.issn.1000-3428.2016.07.025
|
|
Fei Teng, Zhang Liyi, Chen Lei. Improved artificial fish-swarm algorithm mixing Levy mutation and chaotic mutation[J]. Computer Engineering, 2016,42(7):146-152,158.
doi: 10.3969/j.issn.1000-3428.2016.07.025
|
[15] |
景坤雷, 赵小国, 张新雨, 等. 具有levy变异和精英自适应竞争机制的蚁狮优化算法[J]. 智能系统学报, 2018,13(2):236-242.
|
|
Jing Kunlei, Zhao Xiaoguo, Zhang Xinyu, et al. Ant lion optimizer with levy variation and adaptive elite competition mechanism[J]. CAAI Transactions on Intelligent Systems, 2018,13(2):236-242.
|
[16] |
张晓博, 彭进业, 刘恬. 自适应视野和步长的混沌人工鱼群算法[J]. 微电子学与计算机, 2019,36(6):5-9,14.
|
|
Zhang Xiaobo, Peng Jinye, Liu Tian. Adaptive visual field and step length of chaotic artificial fish swarm algorithm[J]. Microelectronics and Computer, 2019,36(6):5-9,14.
|
[17] |
马宪民, 刘妮. 自适应视野的人工鱼群算法求解最短路径问题[J]. 通信学报, 2014,35(1):1-6.
|
|
Ma Xianmin, Liu Ni. Improved artificial fish-swarm algorithm based on adaptive vision for solving the shortest path problem[J]. Journal on Communications, 2014,35(1):1-6.
|
[18] |
朱旭辉, 倪志伟, 程美英. 变步长自适应的改进人工鱼群算法[J]. 计算机科学, 2015,42(2):210-216,246.
|
|
Zhu Xuhui, Ni Zhiwei, Cheng Meiying. Self-adaptive improved artificial fish swarm algorithm with changing step[J]. Computer Science, 2015,42(2):210-216,246.
|
[19] |
王波. 基于自适应t分布混合变异的人工鱼群算法[J]. 计算机工程与科学, 2013,35(4):120-124.
|
|
Wang Bo. Artificial fish-school algorithm based on adaptive t distribution mixed mutation[J]. Computer Engineering and Science, 2013,35(4):120-124.
|
[20] |
崔文华, 刘晓冰, 王伟, 等. 混合蛙跳算法研究综述[J]. 控制与决策, 2012,27(4):481-486,493.
|
|
Cui Wenhua, Liu Xiaobing, Wang Wei, et al. Survey on shuffed frog leaping algorithm[J]. Control and Decision, 2012,27(4):481-486,493.
|
[21] |
张沈习, 陈楷, 龙禹, 等. 基于混合蛙跳算法的分布式风电源规划[J]. 电力系统自动化, 2013,37(13):76-82.
doi: 10.7500/AEPS201207219
|
|
Zhang Shenxi, Chen Kai, Long Yu, et al. Distributed wind generator planning based on shuffled frog leaping algorithm[J]. Automation of Electric Power Systems, 2013,37(13):76-82.
doi: 10.7500/AEPS201207219
|
[22] |
代永强, 王联国, 施秋红, 等. 改进的混合蛙跳算法性能分析及其在电力系统经济调度中的应用[J]. 电力系统保护与控制, 2012,40(10):77-83.
|
|
Dai Yongqiang, Wang Lianguo, Shi Qiuhong, et al. Performance analysis of improved SFLA and the application in economic dispatchof power system[J]. Power System Protection and Control, 2012,40(10):77-83.
|