[1] |
Bishop C. Pattern recognition and machine learning[M]. Berlin:Springer, 2006.
|
[2] |
Schmidhuber J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015,61(3):85-117.
doi: 10.1016/j.neunet.2014.09.003
|
[3] |
Bengio Y, Lecun Y, Hinton G. Deep learning[J]. Nature, 2015,52(1):436-444.
doi: 10.1038/052436a0
|
[4] |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017,40(6):1229-1251.
|
|
Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017,40(6):1229-1251.
|
[5] |
Ahmed A, Hai T. Review of deep convolution neural network in image classification[C]. Piscataway:Intrenational Conference in Redar, Antenna,Microwave,Electronics and Teleccommuntications, 2017.
|
[6] |
龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018,34(18):194-201.
|
|
Long Mansheng, Ouyang Chunjuan, Liu Huan, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(18):194-201.
|
[7] |
何雪英, 韩忠义, 魏本征. 基于深度学习的乳腺癌病理图像自动分类[J]. 计算机工程与应用, 2018,54(12):121-125.
|
|
He Xueying, Han Zhongyi, Wei Benzheng. Breast cancer histopathological image auto-classification using deep learning[J]. Computer Engineering and Applications, 2018,54(12):121-125.
|
[8] |
王鑫, 李可, 徐明君, 等. 改进的基于深度学习的遥感图像分类方法[J]. 计算机应用, 2019,39(2):1-7.
|
|
Wang Xin, Li Ke, Xu Mingjun, et al. Improved remote sensing image classification method based on deep learning[J]. Journal of Computer Applications, 2019,39(2):1-7.
|
[9] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683
pmid: 27244717
|
[10] |
Szegedy C, Loffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[J/OL]. (2016-08-23)[2019-03-11] https://arxiv.org/abs/1602.07261.pdf.
|
[11] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[12] |
Huang G, Liu Z, Maaten L, et al. Huang G,Liu Z,Maaten L,et al.Densely connected convolutional networks[J/OL]. (2018-01-28)[2019-03-11]. http://arxiv.org/pdf/1608.06993.pdf.
|
[13] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]. Pereira:International Conference on Neural Information Processing Systems, 2012.
|
[14] |
Simonyan K, Zisserman A.Very deep convolutional networks for large-scale image recognition[J/OL]. ( (2015-04-10)[2019-03-15]. https://arxiv.org/abs/1409.1556.
|
[15] |
Feng Y Y, Zeng X Y, Yang Y F. Study on the optimization of CNN based on image identification[C]. Wuxi:Distributed Computing and Applications for Business Engineering and Science, 2019.
|
[16] |
Zhang K, Guo Y R, Wang X S, et al. Multiple feature reweight DenseNet for image classification[J]. IEEE Access, 2019(7):9872-9880.
|
[17] |
Mohamed A A, Berg W A, Peng H, et al. A deep learning method for classifying mammographic breast density categories[J]. Medical Physics, 2018,45(1):314-321.
doi: 10.1002/mp.12683
pmid: 29159811
|
[18] |
Girshick R. Fast R-CNN[C]. Santiago: Proceeding of IEEE International Conference on Computer Vision,ICCV Press, 2015.
|
[19] |
Zhang C, Li R, Huang Q, et al. Hierarchical deep semantic representation for visual categorization[J]. Neurocomputing, 2017,25(7):88-96.
|