电子科技 ›› 2022, Vol. 35 ›› Issue (1): 29-34.doi: 10.16180/j.cnki.issn1007-7820.2022.01.005

• • 上一篇    下一篇

基于PCA-PSO-SVM的球磨机负荷预测研究

冯先丁,魏镜弢,吴张永,钱杰,浦友尚   

  1. 昆明理工大学 机电工程学院,云南 昆明 650500
  • 收稿日期:2020-08-21 出版日期:2022-01-15 发布日期:2022-02-24
  • 作者简介:冯先丁(1994-),男,硕士研究生。研究方向:复杂机电系统集成及控制。|魏镜弢(1964-),男,博士,教授。研究方向:矿业装备及自动化。
  • 基金资助:
    国家自然科学基金(51165012)

Research on Load Forecast of Ball Mill Based on PCA-PSO-SVM

FENG Xianding,WEI Jingtao,WU Zhangyong,QIAN Jie,PU Youshang   

  1. Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China
  • Received:2020-08-21 Online:2022-01-15 Published:2022-02-24
  • Supported by:
    National Natural Science Foundation of China(51165012)

摘要:

球磨机是磨矿生产中的主要设备,但其运行时的内部负荷无法被直接检测,因此难以对负荷进行实时有效地控制,导致磨矿效率受到影响。针对此问题,文中通过磨矿实验采集球磨机磨音信号,对信号进行Welch功率谱分析,研究了磨音频谱信息与球磨机负荷之间的关系。利用PCA对功率谱进行特征提取,为球磨机负荷预测提供外部特征信息。然后,采用PSO对SVM相关参数进行寻优并建立PCA-PSO-SVM球磨机负荷预测模型。研究结果表明,该球磨机预测模型的预测均方根误差为1.144 3,平均绝对误差为0.912 5,平均百分比误差为2.797 9%,证明了该模型对球磨机负荷预测的有效性和稳定性。

关键词: 球磨机, 磨音信号, 信号处理, Welch功率谱分析, 主元分析法, 粒子群算法, 支持向量机, 负荷预测

Abstract:

As the main equipment in the grinding production, the internal load of the ball mill cannot be directly detected during operation. Therefore, it is difficult to effectively control the load in real time, which leads to the reduction of grinding efficiency. To solve this problem, the grinding sound signal of the ball mill is collected through the grinding experiment, and the signal is analyzed by the Welch power spectrum, and the relationship between the grinding sound spectrum information and the load of the ball mill is investigated in the proposed study. PCA is used to extract the features of the power spectrum to provide external feature information for load prediction of the ball mill. PSO is adopted to optimize the relevant parameters of SVM and the load prediction model of PA-PSO-SVM ball mill is established. Research shows that the prediction root mean square error of the ball mill prediction model is 1.144 3, the average absolute error is 0.912 5, and the average percentage error is 2.797 9%, which proves the effectiveness and stability of the model for predicting the load of the ball mill.

Key words: ball mill, grinding sound signal, signal processing, Welch power spectrum analysis, PCA, PSO, SVM, load forecasting

中图分类号: 

  • TP312