电子科技 ›› 2020, Vol. 33 ›› Issue (2): 20-24.doi: 10.16180/j.cnki.issn1007-7820.2020.02.004

• • 上一篇    下一篇

基于编码—解码模型的D类功率放大器行为建模

赵一鹤,邵杰,程永亮   

  1. 南京航空航天大学 电子信息工程学院,江苏 南京 210016
  • 收稿日期:2019-01-10 出版日期:2020-02-15 发布日期:2020-03-12
  • 作者简介:赵一鹤(1994-),男,硕士研究生。研究方向:信号检测与处理,深度学习。|邵杰(1963-),男,博士,副教授。研究方向:信号检测与处理,数字系统设计与计算机应用。
  • 基金资助:
    国家自然科学基金(61401198)

Behavior Modeling of Class-D Power Amplifier Based on Encoder-Decoder Model

ZHAO Yihe,SHAO Jie,CHENG Yongliang   

  1. School of Electronic Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Received:2019-01-10 Online:2020-02-15 Published:2020-03-12
  • Supported by:
    Nation Natural Foundation of China(61401198)

摘要:

D类功率放大器具有优异的传输效率,属于开关类功放,其输出信号存在较大的非线性失真。对D类功率放大器进行行为建模时要同时考虑其非线性和记忆特性。文中将小波变换引入到编码—解码神经网络模型中,提出了小波编码—解码神经网络模型。使用基于门限循环单元的编码—解码模型和小波编码—解码模型进行D类功率放大器的行为建模。实验结果表明,文中提出的D类功率放大器行为模型相比于传统的Voterra-Laguerre模型而言,在信号的时域和频域都具有更高的精度。

关键词: D类功率放大器, 非线性系统, 行为模型, 门限循环单元, 编码—解码神经网络;, 小波变换

Abstract:

Class D power amplifiers have excellent transmission efficiency and are classified as power amplifiers. Their output signals have large nonlinear distortion. The behavior modeling of calss-D power amplifier should take into account both nonlinearity and memory characteristics. This study introduced wavelet transform into the encoder-decoder neural network model, and proposed sequence to sequence wavelet neural network model. In this paper, the encoder-decoder model and sequence to sequence wavelet model based on gated recurrent unit were used in the behavior modeling of class-D power amplifier. Experiments results demonstrated that the proposed behavior model of class-D power amplifier had higher precision in time and frequency domain than the traditional Voterra-Laguerre model.

Key words: class-D power amplifier, nonlinearsystem, behaviormodeling, gated recurrent unit, encoder-decoder neural network, wavelet transform

中图分类号: 

  • TP274