电子科技 ›› 2021, Vol. 34 ›› Issue (11): 11-20.doi: 10.16180/j.cnki.issn1007-7820.2021.11.002
张莹,刘子龙,万伟
收稿日期:
2020-07-06
出版日期:
2021-11-15
发布日期:
2021-11-16
作者简介:
张莹(1993-),女,硕士研究生。研究方向:图像处理。|刘子龙(1972-),男,副教授。研究方向:控制科学与控制理论、嵌入式控制、机器人控制。
基金资助:
ZHANG Ying,LIU Zilong,WAN Wei
Received:
2020-07-06
Online:
2021-11-15
Published:
2021-11-16
Supported by:
摘要:
无人机视角目标存在分辨率低、完整度低、干扰项多等缺点。此外,无人机目标检测系统研究进展缓慢,其对于小目标、不完整目标和重叠目标的检测精度无法满足社会实际需求。针对以上问题,文中提出一种基于Faster R-CNN的无人机平台车辆目标检测解决方案。该方案使用ResNet卷积神经网络作为特征提取网络,并改进网络结构,重新设计Anchor生成和改进Soft-NMS算法等策略,解决了小目标、不完整目标和重叠目标的检测精度低等问题, 提高了无人机车辆检测的精度。文中所构建的数据集测试实验表明,所提算法较改进前AP值提高13.46%。公开数据集上的测试实验表明,相较于目前的主流算法,文中所提算法拥有更好的AP值和召回率。
中图分类号:
张莹,刘子龙,万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11): 11-20.
ZHANG Ying,LIU Zilong,WAN Wei. UAV Vehicle Target Detection Based on Faster R-CNN[J]. Electronic Science and Technology, 2021, 34(11): 11-20.
[1] | 袁小平, 王岗, 王晔枫, 等. 基于改进卷积神经网络的交通标志识别方法[J]. 电子科技, 2019, 32(11):28-32. |
Yuan Xiaoping, Wang Gang, Wang Yefeng, et al. Traffic sign recognition method based on improved convolutional neural network[J]. Electronic Science and Technology, 2019, 32(11):28-32. | |
[2] | Joseph R, Santosh D, Ross G, et al. You only look once: unified, real-time object detection[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[3] | Joseph R, Ali F. YOLO9000:Better,faster,stronger[C]. Honolulu:IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[4] | Jiao Z T, Zhang Y M, Mu L X, et al. A YOLOv3-based learning strategy for real-time UAV-based forest fire detection[C]. Hefei:The Thirty-second Conference on Control and Decision-Making in China, 2020. |
[5] | Wei L, Dragomir A, Dumitru E, et al. SSD:Single shot multibox detector[C]. London:European Conference on Computer Vision, 2016. |
[6] | Ross G, Jeff D, Trevor D, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Columbus:IEEE Conference on Computer Vision and Pattern Recognition, 2014. |
[7] | Ross G. Fast R-CNN[C]. Santiago:IEEE International Conference on Computer Vision, 2015. |
[8] |
Shaoqing R, Kaiming H, Ross G, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031 pmid: 27295650 |
[9] | Zhu P, Wen L, Du D, et al. Visdron-det2018:The vision meets drone object detetion in image challenge result[C]. Munich:Proceedings of the European Conference on Computer Vision, 2018. |
[10] | Mundhenk T N, Konjevod G, Sakla W A, et al. A large contextual dataset for classification, detection and counting of cars with deep learning[C]. Amsterdam:European Conference on Computer Vision, 2016. |
[11] |
Sébastien R, Frédéric J. Vehicle detection in aerial imagery:a small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34(7):187-203.
doi: 10.1016/j.jvcir.2015.11.002 |
[12] | Yang M Y, Liao W, Li X, et al. Vehicle detection in aerial images[J]. American Society for Photogrammetry and Remote Sensing, 2019, 85(4):297-304. |
[13] | Zhu H G, Chen X G, Dai W Q, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]. Quebec City:IEEE International Conference on Image Processing, 2015. |
[14] |
De A, Paulo R L O, Luiz S B, et al. PKLot-A robust dataset for parking lot classification[J]. Expert Systems with Applications, 2015, 42(11):4937-4949.
doi: 10.1016/j.eswa.2015.02.009 |
[15] | 周文凯, 韩芳, 孔维健. 基于Faster-RCNN的极验点选式验证码识别[J]. 电子科技, 2019, 32(9):42-46. |
Zhou Wenkai, Han Fang, Kong Weijian. Point-selective geetest captcha recognition based on Faster-RCNN[J]. Electronic Science and Technology, 2019, 32(9):42-46. | |
[16] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[17] | Alexander N, Luc V G. Efficient non-maximum suppression[C]. Hong Kong:The Eighteenth International Conference on Pattern Recognition, 2006. |
[18] | 赵文清, 严海, 邵绪强. 改进的非极大值抑制算法的目标检测[J]. 中国图象图形学报, 2018(11):1676-1685. |
Zhao Wenqing, Yan Hai, Shao Xuqiang. Target detection based on improved non maximum suppression algorithm[J]. Journal of Image and Graphics, 2018(11):1676-1685. | |
[19] | Navaneeth B, Bharat S, Rama C, et al. Soft-NMS--Improving object detection with one line of code[C]. Venice:IEEE International Conference on Computer Vision, 2017. |
[20] | 杨超, 周大可, 杨欣. 基于检测-分割的图像拼接篡改盲取证算法[J]. 电子设计工程, 2020, 28(13):169-174. |
Yang Chao, Zhou Dake, Yang Xin. Spliced image blind forensics based on detection and segmentation[J]. Electronic Design Engineering, 2020, 28(13):169-174. |
[1] | 李辉,王一丞. 基于CNNCIFG-Attention模型的文本情感分类[J]. 电子科技, 2022, 35(2): 46-51. |
[2] | 程晓雅,张雷. 基于深度学习的有遮挡人脸识别方法研究[J]. 电子科技, 2022, 35(1): 35-39. |
[3] | 战荫伟,朱百万,杨卓. 一种车脸识别算法的研究与应用[J]. 电子科技, 2021, 34(8): 1-7. |
[4] | 廖璐明,张伟. 基于改进VGG16网络的混合批量训练交通标志识别[J]. 电子科技, 2021, 34(8): 8-13. |
[5] | 马立新,豆晨飞,宋晨灿,杨天笑. 基于特征融合卷积神经网络的绝缘子无损检测[J]. 电子科技, 2021, 34(7): 26-30. |
[6] | 顾伟,李菲菲,陈虬. 基于多特征融合的行人检测方法[J]. 电子科技, 2021, 34(5): 29-34. |
[7] | 薛永杰,巨志勇. 基于改进AlexNet的鱼类识别算法[J]. 电子科技, 2021, 34(4): 12-17. |
[8] | 闫书豪,乔美英. 基于一维WConv-BiLSTM的轴承故障诊断算法[J]. 电子科技, 2021, 34(4): 75-82. |
[9] | 葛靖,刘子龙. 基于CNN和LSTM的睡眠呼吸暂停检测算法[J]. 电子科技, 2021, 34(2): 21-26. |
[10] | 朱斌,刘子龙. 基于新型初始模块的卷积神经网络图像分类方法[J]. 电子科技, 2021, 34(2): 52-56. |
[11] | 张灿,陈玮,尹钟. 基于弱监督宫颈细胞图像的语义分割方法[J]. 电子科技, 2021, 34(12): 68-74. |
[12] | 李诚,刘昊,蒋希峰,吴军法,韩文刚,高建国. 基于VGG网络的发电机定转子智能诊断算法[J]. 电子科技, 2021, 34(11): 62-66. |
[13] | 董波,周燕,王永雄. 基于渐进结构感受野和全局注意力的显著性检测[J]. 电子科技, 2021, 34(1): 23-30. |
[14] | 苏烨,李筠,杨海马,刘瑾,江声华. 基于Faster R-CNN的钢轨表面缺陷识别研究[J]. 电子科技, 2020, 33(9): 63-68. |
[15] | 张翔,史志才,陈良. 基于SWA优化级联网络的表情识别方法[J]. 电子科技, 2020, 33(9): 16-20. |
|