[1] |
袁小平, 王岗, 王晔枫, 等. 基于改进卷积神经网络的交通标志识别方法[J]. 电子科技, 2019, 32(11):28-32.
|
|
Yuan Xiaoping, Wang Gang, Wang Yefeng, et al. Traffic sign recognition method based on improved convolutional neural network[J]. Electronic Science and Technology, 2019, 32(11):28-32.
|
[2] |
Joseph R, Santosh D, Ross G, et al. You only look once: unified, real-time object detection[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[3] |
Joseph R, Ali F. YOLO9000:Better,faster,stronger[C]. Honolulu:IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[4] |
Jiao Z T, Zhang Y M, Mu L X, et al. A YOLOv3-based learning strategy for real-time UAV-based forest fire detection[C]. Hefei:The Thirty-second Conference on Control and Decision-Making in China, 2020.
|
[5] |
Wei L, Dragomir A, Dumitru E, et al. SSD:Single shot multibox detector[C]. London:European Conference on Computer Vision, 2016.
|
[6] |
Ross G, Jeff D, Trevor D, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Columbus:IEEE Conference on Computer Vision and Pattern Recognition, 2014.
|
[7] |
Ross G. Fast R-CNN[C]. Santiago:IEEE International Conference on Computer Vision, 2015.
|
[8] |
Shaoqing R, Kaiming H, Ross G, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
pmid: 27295650
|
[9] |
Zhu P, Wen L, Du D, et al. Visdron-det2018:The vision meets drone object detetion in image challenge result[C]. Munich:Proceedings of the European Conference on Computer Vision, 2018.
|
[10] |
Mundhenk T N, Konjevod G, Sakla W A, et al. A large contextual dataset for classification, detection and counting of cars with deep learning[C]. Amsterdam:European Conference on Computer Vision, 2016.
|
[11] |
Sébastien R, Frédéric J. Vehicle detection in aerial imagery:a small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34(7):187-203.
doi: 10.1016/j.jvcir.2015.11.002
|
[12] |
Yang M Y, Liao W, Li X, et al. Vehicle detection in aerial images[J]. American Society for Photogrammetry and Remote Sensing, 2019, 85(4):297-304.
|
[13] |
Zhu H G, Chen X G, Dai W Q, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]. Quebec City:IEEE International Conference on Image Processing, 2015.
|
[14] |
De A, Paulo R L O, Luiz S B, et al. PKLot-A robust dataset for parking lot classification[J]. Expert Systems with Applications, 2015, 42(11):4937-4949.
doi: 10.1016/j.eswa.2015.02.009
|
[15] |
周文凯, 韩芳, 孔维健. 基于Faster-RCNN的极验点选式验证码识别[J]. 电子科技, 2019, 32(9):42-46.
|
|
Zhou Wenkai, Han Fang, Kong Weijian. Point-selective geetest captcha recognition based on Faster-RCNN[J]. Electronic Science and Technology, 2019, 32(9):42-46.
|
[16] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[17] |
Alexander N, Luc V G. Efficient non-maximum suppression[C]. Hong Kong:The Eighteenth International Conference on Pattern Recognition, 2006.
|
[18] |
赵文清, 严海, 邵绪强. 改进的非极大值抑制算法的目标检测[J]. 中国图象图形学报, 2018(11):1676-1685.
|
|
Zhao Wenqing, Yan Hai, Shao Xuqiang. Target detection based on improved non maximum suppression algorithm[J]. Journal of Image and Graphics, 2018(11):1676-1685.
|
[19] |
Navaneeth B, Bharat S, Rama C, et al. Soft-NMS--Improving object detection with one line of code[C]. Venice:IEEE International Conference on Computer Vision, 2017.
|
[20] |
杨超, 周大可, 杨欣. 基于检测-分割的图像拼接篡改盲取证算法[J]. 电子设计工程, 2020, 28(13):169-174.
|
|
Yang Chao, Zhou Dake, Yang Xin. Spliced image blind forensics based on detection and segmentation[J]. Electronic Design Engineering, 2020, 28(13):169-174.
|