电子科技 ›› 2021, Vol. 34 ›› Issue (11): 11-20.doi: 10.16180/j.cnki.issn1007-7820.2021.11.002

• • 上一篇    下一篇

基于Faster R-CNN的无人机车辆目标检测

张莹,刘子龙,万伟   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2020-07-06 出版日期:2021-11-15 发布日期:2021-11-16
  • 作者简介:张莹(1993-),女,硕士研究生。研究方向:图像处理。|刘子龙(1972-),男,副教授。研究方向:控制科学与控制理论、嵌入式控制、机器人控制。
  • 基金资助:
    国家自然科学基金(61603255)

UAV Vehicle Target Detection Based on Faster R-CNN

ZHANG Ying,LIU Zilong,WAN Wei   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2020-07-06 Online:2021-11-15 Published:2021-11-16
  • Supported by:
    National Natural Science Foundation of China(61603255)

摘要:

无人机视角目标存在分辨率低、完整度低、干扰项多等缺点。此外,无人机目标检测系统研究进展缓慢,其对于小目标、不完整目标和重叠目标的检测精度无法满足社会实际需求。针对以上问题,文中提出一种基于Faster R-CNN的无人机平台车辆目标检测解决方案。该方案使用ResNet卷积神经网络作为特征提取网络,并改进网络结构,重新设计Anchor生成和改进Soft-NMS算法等策略,解决了小目标、不完整目标和重叠目标的检测精度低等问题, 提高了无人机车辆检测的精度。文中所构建的数据集测试实验表明,所提算法较改进前AP值提高13.46%。公开数据集上的测试实验表明,相较于目前的主流算法,文中所提算法拥有更好的AP值和召回率。

关键词: Faster R-CNN, 无人机图像, 车辆检测, ResNet, 卷积神经网络, 网络结构改进, Anchor生成, Soft-NMS算法

Abstract:

There are disadvantages such as low resolution, low completeness, and many interference items in the UAV's perspective targets. Additionally, the research progress of UAV target detection system is slow, and its detection accuracy for small targets, incomplete targets and overlapping targets cannot meet the actual needs of society. In view of these problems, this study proposes a vehicle target detection solution for UAV platform based on Faster R-CNN. This solution uses ResNet convolutional neural network as the feature extraction network, improves the network structure, redesigns Anchor generation and improves the Soft-NMS algorithm and other strategies, solves the problem of low detection accuracy of small targets, incomplete targets and overlapping targets, and improves the accuracy of UAV vehicle detection. The test experiments on the dataset constructed in this study show that the proposed algorithm has 13.46% increase in AP value compared with the previous improvement. Test experiments on the public data set show that compared with the current mainstream algorithms, the proposed algorithm has better AP value and recall rate.

Key words: Faster R-CNN, UAV image, vehicle detection, ResNet, convolutional neural network, network structure improvement, Anchor generation, Soft-NMS algorithm

中图分类号: 

  • TP391