[1] |
付婧锐. 浅析行为金融学[J]. 中外企业家, 2019(2):51-52.
|
|
Fu Jingrui. Analysis of behavioral finance[J]. Chinese& Foreign Entrepreneurs, 2019(2):51-52.
|
[2] |
黄进. 金融领域中基于UGC的情感分析[D]. 上海:华东理工大学, 2014.
|
|
Huang Jin. Sentiment analysis based on UGC in financial domain[D]. Shanghai:East China University of Science and Technology, 2014.
|
[3] |
张道玲. 情感分析方法在金融语料库中的应用[D]. 广州:暨南大学, 2018.
|
|
Zhang Daoling. The application of sentiment analysis in financial corpus[D]. Guangzhou:Jinan University, 2018.
|
[4] |
Pak A, Paroubek P. Twitter as a corpus for sentiment analysis and opinion mining[C]. Valletta:Proceedings of the International Conference on Language Resources and Evaluation, 2010.
|
[5] |
缪广寒. 基于Word2vec和SVM的微博情感挖掘与仿真分析[J]. 电子科技, 2018,31(5):81-83.
|
|
Miu Guanghan. Emotion mining and simulation analysis of microblogging based on Word2vec and SVM[J]. Electronic Science and Technology, 2018,31(5):81-83.
|
[6] |
孙建旺, 吕学强, 张雷瀚. 基于词典与机器学习的中文微博情感分析研究[J]. 计算机应用与软件, 2014,31(7):177-181.
|
|
Sun Jianwang, Lü Xueqiang, Zhang Leihan. Sentiment analysis of Chinese microblogging based on lexicon and machine learning[J]. Computer Applications and Software, 2014,31(7):177-181.
|
[7] |
胡航丽, 莫倩. 利用篇章结构改进股评观点分类的研究[J]. 小型微型计算机系统, 2009,30(5):899-902.
|
|
Hu Hangli, Mo Qian. Research on opinion classification of stock recommendations based on discourse structure[J]. Journal of Chinese Computer Systems, 2009,30(5):899-902.
|
[8] |
罗明, 黄海量. 一种基于语义标注特征的金融文本分类方法[J]. 计算机应用研究, 2018,35(8):47-50,54.
|
|
Luo Ming, Huang Hailiang. New approach of financial text classification based on semantic annotation features[J]. Application Research of Computers, 2018,35(8):47-50,54.
|
[9] |
Kim Y. Convolutional neural networks for sentence classification[C]. Doha:Conference on Empirical Methods in Natural Language Processing, 2014.
|
[10] |
尹光花, 刘小明, 张露, 等. 基于LSTM特征模板的短文本情感要素分析与研究[J]. 电子科技, 2018,31(11):38-41,46.
|
|
Yin Guanghua, Liu Xiaoming, Zhang Lu, et al. Sentiment elements of internet short texts for analysis and research based on LSTM network mode[J]. Electronic Science and Technology, 2018,31(11):38-41,46.
|
[11] |
郑国伟, 吕学强, 夏红科, 等. 基于LSTM的金融新闻倾向性[J]. 计算机工程与设计, 2018,39(11):170-175.
|
|
Zheng Guowei, Lü Xueqiang, Xia Hongke, et al. Financial news tendency based on LSTM[J]. Computer Engineering and Design, 2018,39(11):170-175.
|
[12] |
王子牛, 吴建华, 高建瓴, 等. 基于深度神经网络和LSTM的文本情感分析[J]. 软件, 2018,39(12):19-22.
|
|
Wang Ziniu, Wu Jianhua, Gao Jianling, et al. Textsenti-ment analysis based on deep neural network and LSTM[J]. Computer Engineering & Software, 2018,39(12):19-22.
|
[13] |
李洋, 董红斌. 基于CNN和BiLSTM网络特征融合的文本情感分析[J]. 计算机应用, 2018,38(11):3075-3080.
|
|
Li Yang, Dong Hongbin. Text sentiment analysis based on feature fusion of convolution neural network and bidir-ectional long short-term memory network[J]. Journal of Computer Applications, 2018,38(11):3075-3080.
|
[14] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[EB/OL]. (2017-06-12)[2019-05-11]. https://arxiv.org/abs/1706.03762.
|
[15] |
杜慧, 俞晓明, 刘悦, 等. 融合词性和注意力的卷积神经网络对象级情感分类方法[J]. 模式识别与人工智能, 2018,31(12):62-68.
|
|
Du Hui, Yu Xiaoming, Liu Yue, et al. CNN with part-of-speech and attention mechanism for targeted sentiment classification[J]. Pattern Recognition and Artificial Intell-igence, 2018,31(12):62-68.
|
[16] |
Jimmy Lei Ba, Jamie Ryan Kiros. Layer normali-zation[EB/OL]. (2016-06-21)[2019-05-15]. https://arxiv.org/abs/1607.06450.
|
[17] |
胡荣磊, 芮璐, 齐筱, 等. 基于循环神经网络和注意力模型的文本情感分析[J]. 计算机应用研究, 2019,36(11):3282-3285.
|
|
Hu Ronglei, Rui Lu, Qi Xiao, et al. Text sentiment analysis based on recurrent neural networks and attention model[J]. Application Research of Computers, 2019,36(11):3282-3285.
|