电子科技 ›› 2020, Vol. 33 ›› Issue (9): 16-20.doi: 10.16180/j.cnki.issn1007-7820.2020.09.003

• • 上一篇    下一篇

基于SWA优化级联网络的表情识别方法

张翔,史志才,陈良   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2019-07-02 出版日期:2020-09-15 发布日期:2020-09-12
  • 作者简介:张翔(1995-),男,硕士研究生。研究方向:计算机视觉、深度学习等。|史志才(1964-),男,博士,教授。研究方向:物联网与嵌入式系统,计算机网络与信息安全等。
  • 基金资助:
    国家自然科学基金(61802252)

Expression Recognition Method Based on Cascade Network Optimized by SWA

ZHANG Xiang,SHI Zhicai,CHEN Liang   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2019-07-02 Online:2020-09-15 Published:2020-09-12
  • Supported by:
    National Natural Science Foundation of China(61802252)

摘要:

为了提高表情识别技术的检测精度,文中提出了一种采用随机权重平均SWA优化级联网络的人脸表情识别方法。与单个卷积网络相比,多网络级联能得到更好的检测精度。相对于传统的SGD训练方法,SWA训练方法能增强级联网络中子网络的泛化能力,进一步提高模型的整体性能。通过在Fer2013数据集上测试实验发现,基于SWA方法训练采用加权求和法方式级联的网络模型识别准确率达到74.478%,相对于传统SGD方法训练的单网络模型提高了1.4%以上。另外,与其他典型方法相比,所提改进模型的识别准确率更高。

关键词: 表情识别, 卷积神经网络, 随机权重平均, 随机梯度下降法, Fer2013数据集, 网络级联

Abstract:

In order to improve the detection accuracy of expression recognition technology, a face expression recognition method based on cascade network optimized by SWA is proposed. Compared with a single convolutional network, multi-network cascading reachs higher detection accuracy. With respect to the traditional training method SGD, SWA training method enhances the generalization ability of the sub-network in the cascade network, which further improves the overall performance of the model. By testing on the Fer2013 dataset, the experimental results shows that the detection accuracy of the network cascaded by the way of weighted summation based on SWA training method reachs 74.478%, which is 1.4% higher than the single network model trained by the traditional SGD method. In addition, the improved model proposed in the present study reachs a higher recognition accuracy than other typical methods.

Key words: expression recognition, convolutional neural network, stochastic weight averaging, stochastic gradient descent, Fer2013 dataset, network cascade

中图分类号: 

  • TP391