[1] |
Lanitis A, Taylor C J, Cootes T F. Automatic interpretation and coding of face images using flexible models[J]. IEEE Transactions on Pattern Analysis and machine intelligence, 1997,19(7):743-756.
|
[2] |
Oshidari B, Araabi B N. An effective feature extraction method for facial expression recognition using adaptive Gabor wavelet[C]. Shanghai:IEEE International Conference on Progress in Informatics and Computing, 2010.
|
[3] |
印勇, 史金玉, 刘丹平. 基于Gabor小波的人脸表情识别[J]. 光电工程, 2009,36(5):111-116.
|
|
Yin Yong, Shi Jinyu, Liu Danping. Facial expression recognition based on Gabor wavelet transform[J]. Opto-Electronic Engineering, 2009,36(5):111-116.
|
[4] |
胡少聪. 基于深度学习的人脸识别方法研究[J]. 电子科技, 2019,32(6):82-86.
|
|
Hu Shaocong. Research on face recognition based on deep learning[J]. Electronic Science and Technology, 2019,32(6):82-86.
|
[5] |
李勇, 林小竹, 蒋梦莹. 基于跨连接 LeNet-5 网络的面部表情识别[J]. 自动化学报, 2018,44(1):176-182.
|
|
Li Yong, Lin Xiaozhu, Jiang Mengying. Facial expression recognition with cross-connect LeNet-5 network[J]. Acta Automatica Sinica, 2018,44(1):176-182.
|
[6] |
钱勇生, 邵洁, 季欣欣, 等. 基于改进卷积神经网络的多视角人脸表情识别[J]. 计算机工程与应用, 2018,54(24):12-19.
|
|
Qian Yongsheng, Shao Jie, Ji Xinxin, et al. Multi-view facial expression recognition based on improved convolutional neural network[J]. Computer Engineering and Applications, 2018,54(24):12-19.
|
[7] |
Izmailov P, Podoprikhin D, Garipov T, et al. Averaging weights leads to wider optima and better generalization[EB/OL]. (2018-03-14)[2019-05-08]. http://arxiv.org/abs/1803.05407.
|
[8] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. San Diego:International Conference on Learning Representations, 2015.
|
[9] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[10] |
Kahou S E, Pal C, Bouthillier X, et al. Combining modality specific deep neural networks for emotion recognition in video[C]. Sydney:The Fifteenth ACM International Conference on Multimodal Interaction, 2013.
|
[11] |
Keskar N S, Mudigere D, Nocedal J, et al. On large-batch training for deep learning: Generalization gap and sharp minima[EB/OL].(2016-09-15)[2019-05-09]. http://arxiv.org/abs/1609.04836.
|
[12] |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014,15(1):1929-1958.
|
[13] |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[14] |
翟懿奎, 刘健. 面向人脸表情识别的迁移卷积神经网络研究[J]. 信号处理, 2018,34(6):729-738.
|
|
Zhai Yikui, Liu Jian. Facial expression recognition based on transferring convolutional neural network[J]. Journal of Signal Processing, 2018,34(6):729-738.
|
[15] |
徐琳琳, 张树美, 赵俊莉. 构建并行卷积神经网络的表情识别算法[J]. 中国图象图形学报, 2019,24(2):227-236.
|
|
Xu Linlin, Zhang Shumei, Zhao Junli. Expression recognition algorithm for parallel convolutional neural networks[J]. Journal of Image and Graphics, 2019,24(2):227-236.
|
[16] |
Guo Y, Tao D, Yu J, et al. Deep neural networks with relativity learning for facial expression recognition[C]. Seattle:IEEE International Conference on Multimedia & Expo Workshops, 2016.
|
[17] |
Kim B K, Dong S Y, Roh J, et al. Fusing aligned and non-aligned face information for automatic affect recognition in the wild:a deep learning approach[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016.
|