电子科技 ›› 2021, Vol. 34 ›› Issue (10): 69-74.doi: 10.16180/j.cnki.issn1007-7820.2021.10.011

• • 上一篇    下一篇

基于SVM与区域生长的彩色商品标签图像分割方法

巨志勇,翟春宇,张文馨   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2020-06-01 出版日期:2021-10-15 发布日期:2021-10-18
  • 作者简介:巨志勇(1975-),男,博士,讲师。研究方向:图像处理与模式识别。|翟春宇(1995-),女,硕士研究生。研究方向:图像处理与模式识别。
  • 基金资助:
    国家自然科学基金(81101116)

Color Commodity Label Image Segmentation Method Based on SVM and Region Growth

JU Zhiyong,ZHAI Chunyu,ZHANG Wenxin   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2020-06-01 Online:2021-10-15 Published:2021-10-18
  • Supported by:
    National Natural Science Foundation of China(81101116)

摘要:

传统区域生长的噪声和灰度不均可能会导致空洞和过分割,严重影响图像分割效果。针对此问题,文中提出了一种 SVM与区域生长相结合的彩色标签图像分割算法。该算法将标签部分和商品部分的颜色信息和纹理等特征作为SVM的正负样本,既有效提高了效率,又提高了图像分割的精度。在提取正负样本时,利用改进区域生长算法分割出特征区域并提取特征。理论分析和实验结果表明,所提出的算法具有更正错误检测信息机制,提高了分割效率,较好地防止了传统区域增长算法分割时的过分割现象,并具有良好的鲁棒性,为后期拓展奠定了基础。

关键词: 彩色图像分割, 区域生长算法, 支持向量机, 形态学处理, 图像增强, 标记背景, 特征提取, 颜色空间

Abstract:

The noise and gray scale growth in the traditional area may cause voids and over-segmentation, which will seriously affect the image segmentation effect. To solve this problem, this study proposes a color label image segmentation algorithm combining SVM and region growth. The algorithm uses the color information and texture of the label part and product part as positive and negative samples of the SVM, which effectively improves the efficiency and the accuracy of image segmentation. When extracting positive and negative samples, the improved region growth algorithm is used to segment feature areas and extract features. Theoretical analysis and experimental results show that the proposed algorithm has a mechanism for correcting error detection information, improves the segmentation efficiency, prevents the over-segmentation phenomenon of traditional regional growth algorithms during segmentation, and has good robustness, which lays the foundation for later expansion.

Key words: color image segmentation, region growth algorithm, support vector machine, morphological processing, image enhancement, labeling background, feature extraction, color space

中图分类号: 

  • TP751.1