[1] |
郭亮, 高宏力, 张一文 , 等. 基于深度学习理论的轴承状态识别研究[J]. 振动与冲击, 2016,35(12):166-170.
|
|
Guo Liang, Gao Hongli, Zhang Yiwen , et al. Research on bearing condition monitoring based on deep learning[J]. Journal of Vibration and Shock, 2016,35(12):166-170.
|
[2] |
孙小明 . 基于LabVIEW和MATLAB混合编程的滚动轴承故障诊断系统[J]. 电子科技, 2018,31(7):11-14.
|
|
Sun Xiaoming . Fault diagnosis system of rolling bearing based on LabVIEW and MATLAB mixed programming[J]. Electronic Science and Technology, 2018,31(7):11-14.
|
[3] |
沙美妤, 刘利国 . 基于振动信号的轴承故障诊断技术综述[J]. 轴承, 2015(9):59-63.
|
|
Sha Meiyu, Liu Liguo . Review on fault diagonsis technology for bearings based on vibration signal[J]. Bearing, 2015(9):59-63.
|
[4] |
高宏力, 李登万, 许明恒 . 基于人工智能的丝杠寿命预测技术[J]. 西南交通大学学报, 2010,45(5):685-691
|
|
Gao Hongli, Li Dengwan, Xu Mingheng . Intelligent mollitoring system for screw life evaluation[J]. Journal of Southwest Jiaotong University, 2010,45(5):685-691.
|
[5] |
李海洋, 谢里阳, 刘杰 , 等. 无失效数据场合智能换刀机器人中轴承的可靠性评估[J]. 机械工程学报, 2019(2):186-194.
|
|
Li Haiyang, Xie Liyang, Liu Jie , et al. Reliability evaluation of bearings in the intelligent robot for changing the hobwithout failure data[J]. Journal of Mechanical Engineering, 2019(2):186-194.
|
[6] |
Ali J B, Chebel-Morello B, Saildi L , et al. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network[J]. Mechanical Systems & Signal Processing, 2015(56):150-172.
|
[7] |
Ma Meng, Chen Xuefeng, Wang Shibin , et al. Bearing degradation assessment based on weibull distribution and deep belief network[C]. Cleveland:International Symposium on Flexible Automation, 2016.
|
[8] |
刘海涛, 张志华 . 威布尔分布无失效数据的Bayes可靠性分析[J]. 系统工程理论与实践, 2008,28(11):103-108.
|
|
Liu Haitao, Zhang Zhihua . Bayesian reliability analysis of Weibull zero failure data[J]. Systems Engineering-Theory & Practice, 2008,28(11):103-108.
|
[9] |
Goodfellow I J, Pouget Abadie J, Mirza M , et al. Generative adversarial nets[C]. Kuching:Malaysia International Conference on Neural Information Processing Systems, 2014.
|
[10] |
Radford A, Metz L, Chintala S . Unsupervised representation learning with deep convolutional generative adversarial networks[C]. San Juan:Proceedings of the 4 th International Conference on Learning Representations , 2016.
|
[11] |
宋熙煜, 周利莉, 李中国 , 等. 图像分割中的超像素方法研究综述[J]. 中国图象图形学报, 2015,20(5):599-608.
|
|
Song Xiyu, Zhou Lili, Li Zhongguo , et al. Review on superpixel methods in image segmentation[J]. Journal of Image and Graphics, 2015,20(5):599-608.
|
[12] |
齐美彬, 陈秀丽, 杨艳芳 , 等. 高效率视频编码帧内预测编码单元划分快速算法[J]. 电子与信息学报, 2014(7):1699-1705.
|
|
Qi Meibin, Chen Xiuli, Yang Yanfang , et al. Fast coding unit splitting algorithm for high efficiency video coding intra prediction[J]. Journal of Electronics & Information Technology, 2014(7):1699-1705.
|
[13] |
蔡兴泉, 郭天航 . 面向手机应用的图像色彩风格迁移系统设计与实现[J]. 信息通信, 2016(6):139-140.
|
|
Cai Xingquan, Guo Tianhang . Design and implementation of a system for image color style migration for mobile applications[J]. Information & Communications, 2016(6):139-140.
|
[14] |
Wang K F, Gou C, Duan Y J , et al. Generative adversarial networks:the state of the art and beyond[J]. Acta Automatica Sinica, 2017,43(3):321-332.
|
[15] |
杜秋平, 刘群 . 基于图像云模型语义标注的条件生成对抗网络[J]. 模式识别与人工智能, 2018,31(4):379-388.
|
|
Du Qiuping, Liu Qun . Conditional generative adversarial network based on image semantic annotation of cloud model[J]. Pattern Recognition and Artificial Intelligence, 2018,31(4):379-388.
|
[16] |
许哲豪, 陈玮 . 基于生成对抗网络的图片风格迁移[J]. 软件导刊, 2018,17(6):211-213,216,232.
|
|
Xu Zhehao, Chen Wei . Style transfer with generative adversarial nets[J]. Software Guide, 2018,17(6):211-213,216,232..
|
[17] |
Antoni J, Randall R B . Differential diagnosis of gear and bearing faults[J]. Journal of Vibration & Acoustics, 2002,124(2):165-171.
|