电子科技 ›› 2023, Vol. 36 ›› Issue (12): 46-54.doi: 10.16180/j.cnki.issn1007-7820.2023.12.007

• • 上一篇    下一篇

基于改进蜜獾优化算法的PID参数整定

胡涛,蒋全   

  1. 上海理工大学 机械工程学院,上海 200093
  • 收稿日期:2022-07-26 出版日期:2023-12-15 发布日期:2023-12-05
  • 作者简介:胡涛(1997-),男,硕士研究生。研究方向:群智能算法、永磁同步电机PI参数整定。|蒋全(1963-),男,博士,教授。研究方向:永磁电机控制、参数辨识、电力电子与电力传动。
  • 基金资助:
    国家重点研发计划(2018YFB0104603)

PID Parameter Tuning Based on Improved Honey Badger Optimization Algorithm

HU Tao,JIANG Quan   

  1. School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2022-07-26 Online:2023-12-15 Published:2023-12-05
  • Supported by:
    National Key R&D Program of China(2018YFB0104603)

摘要:

作为一种模拟蜜獾捕食行为的群智能算法,蜜獾算法易陷入局部最优解且所需迭代多次。针对蜜獾算法存在的不足,文中提出一种结合引力搜索算法与正态云技术的蜜獾算法,即CHBA(Cloud Honey Bodger Algorithm)。将蜜獾算法原有控制蜜獾个体搜索范围的密度因子替换为引力搜索算法中的加速度,提高蜜獾个体搜索范围的合理性,加速搜索迭代速度。以每代最佳蜜獾位置为期望用正态云算法生成新一批蜜獾,从而提高种群多样性,避免陷入局部最优。同时自适应调整新蜜獾的生成范围,避免局部最优。文中选用了23个基准测试函数对所提算法进行了检验,从单峰、多峰及固定维多峰函数的寻优结果分析,并对一阶时滞系统、非最小相位系统和一阶最小延迟系统的阶跃响应PID(Proportion Integration Differentiation)参数进行了优化对比,结果表明CHBA算法在搜索效率和迭代精度上具有更好的性能。

关键词: PID, 蜜獾算法, 参数整定, 群智能算法, 不稳定对象, Simulink仿真, 智能算法, 引力搜索算法

Abstract:

As a swarm intelligence algorithm simulating the predator-prey behavior of honey badger, honey badger algorithm has many problems, such as easy to fall into local optimal solutions, and the number of iterations required. In view of the shortcomings of honey badger algorithm, a cloud honey badger algorithm (CHBA) combining gravity search algorithm and normal cloud technology is proposed. The density factor of the original honey badger algorithm that controls the individual search range of the honey badger is replaced by the acceleration in the gravitational search algorithm to improve the rationality of the individual search range of the honey badger and accelerate the search iteration speed. The normal cloud algorithm is used to generate a new batch of honey badgers with the expectation of the best position of the honey badger between generations, so as to improve the population diversity and avoid falling into local optimization. At the same time, the generation range of the new honey badger is adaptively adjusted to avoid local optimization. Twenty three benchmark functions are selected to test the proposed algorithm. From the optimization results of single peak, multi peak and fixed dimension multi peak functions, the step response PID(Proportion Integration Differentiation) parameters of first-order delay system, non minimum phase system and first-order minimum delay system are optimized and compared, and the results show that CHBA algorithm has better performance in search efficiency and iteration accuracy.

Key words: PID, honey badger algorithm, parameter setting, swarm intelligence algorithm, unstable object, Simulink simulation, intelligent algorithm, gravitational search algorithm

中图分类号: 

  • TP273