[1] |
Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95(5):51-67.
doi: 10.1016/j.advengsoft.2016.01.008
|
[2] |
Ziegler J G, Nichols N B. Optimum settings for automatic controllers[J]. Transactions of American the Society of Mechanical Engineers, 1942, 64(4):759-768.
|
[3] |
Cohen G H, Coon G A. Theoretical consideration of retarded control[J]. Transactions of American the Society of Mechanical Engineers, 1953, 75(5):827-833.
|
[4] |
郝万君, 强文义, 胡林献, 等. 基于改进粒子群算法的PID参数优化与仿真[J]. 控制工程, 2006(5):429-432.
|
|
Hao Wanjun, Qiang Wenyi, Hu Linxian, et al. Optimization and simulation of PID parameters based on improved particle swarm algorithms[J]. Control Engineering of China, 2006(5):429-432.
|
[5] |
曾国辉, 杜涛, 黄勃, 等. 基于蚁狮优化算法分数阶PI的PMSM矢量控制[J]. 电力电子技术, 2021, 55(5):120-123,145.
|
|
Zeng Guohui, Du Tao, Huang Bo, et al. Vector control of PMSM based on ant lion optimization algorithm of fractional-order PI[J]. Power Electronics, 2021, 55(5):120-123,145.
|
[6] |
耿文波, 周子昂. 改进粒子群算法优化的BLDCM调速系统研究[J]. 控制工程, 2019, 26(9):1636-1641.
|
|
Geng Wenbo, Zhou Ziang. Research on improved particle swarm optimization for BLDCM speed control system[J]. Control Engineering of China, 2019, 26(9):1636-1641.
|
[7] |
Hashim F A, Houssein E H, Hussain K, et al. Honey b-adger algorithm:New metaheuristic algorithm for solving optimization problems[J]. Mathematics and Computers in Simulation, 2022, 192(2):84-110.
doi: 10.1016/j.matcom.2021.08.013
|
[8] |
Han E, Ghadimi N. Model identification of proton exc-hange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm[J]. Sustainable Energy Technologies and Assessments, 2022, 52(8):102-105.
|
[9] |
Kapner D J, Cook T S, Adelberger E G, et al. Tests of the gravitational inverse-square law below the dark energy length scale[J]. Physical Review Letters, 2007, 98(2):211-221.
|
[10] |
Esmat R, Hossein N, Saeid S. GSA:A gravitational search algorithm[J]. Information Sciences, 2009, 179(13):2232-2248.
doi: 10.1016/j.ins.2009.03.004
|
[11] |
单梁, 强浩, 李军, 等. 基于Tent映射的混沌优化算法[J]. 控制与决策, 2005(2):179-182.
|
|
Shan Liang, Qiang Hao, Li Jun, et al. Chaotic optimization algorithm based on Tent map[J]. Control and Decision, 2005(2):179-182.
|
[12] |
李德毅, 孟海军, 史雪梅. 隶属云和隶属云发生器[J]. 计算机研究与发展, 1995, 32(6):15-20.
|
|
Li Deyi, Meng Haijun, Shi Xuemei. Membership clouds and membership cloud generators[J]. Journal of Computer Research and Development, 1995, 32(6):15-20.
|
[13] |
Mirjalili S, Gandomi A H, Mirjalili S Z, et al. Salp swarm algorithm:A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114(12):163-191.
doi: 10.1016/j.advengsoft.2017.07.002
|
[14] |
Kennedy J, Eberhare R C. Particle swarm optimization[C]. Perth: Proceedings of IEEE International Conference on Neural Network, 1995:1942-1948.
|
[15] |
Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95(2):51-67.
doi: 10.1016/j.advengsoft.2016.01.008
|
[16] |
Mirjalili S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83(5):80-98.
doi: 10.1016/j.advengsoft.2015.01.010
|
[17] |
Li D Y, Liu C Y, Gan W Y. A new cognitive model:Cloud model[J]. International Journal of Intelligent Systems, 2009, 24(3):357-375.
doi: 10.1002/int.v24:3
|
[18] |
张铸, 张仕杰, 饶盛华, 等. 基于自适应正态云模型的引力樽海鞘群算法[J]. 控制与决策, 2022, 37(2):344-352.
|
|
Zhang Zhu, Zhang Shijie, Rao Shenghua, et al. Gravity salp swarm algorithm based on adaptive normal cloud model[J]. Control and Decision, 2022, 37(2):344-352.
|
[19] |
崔金玲, 吴迪. 基于正态云模型的自适应果蝇优化算法[J]. 河南理工大学学报(自然科学版), 2016, 35(5):697-705.
|
|
Cui Jinling, Wu Di. Adaptive fruit fly optimization algorithm based on normal cloud model[J]. Journal of Henan Polytechnic University(Natural Science), 2016, 35(5):697-705.
|
[20] |
Zhu M, Yang C, Li W. Autotuning algorithm of particle swarm PID parameter based on D-Tent chaotic model[J]. Journal of Systems Engineering and Electronics, 2013, 24(5):828-837.
doi: 10.1109/JSEE.2013.00096
|
[21] |
刘晨旻, 王亚刚. 基于连续空间的萤火虫算法改进[J]. 电子科技, 2022, 35(2):40-45.
|
|
Liu Chenmin, Wang Yagang. Optimization of firefly al-gorithm based on continuous space[J]. Electronic Science and Technology, 2022, 35(2):40-45.
|
[22] |
吴强, 张伟, 杨慧婷, 等. 基于天牛须算法的粒子群算法在PID参数整定上的应用[J]. 电子科技, 2020, 33(6):18-23.
|
|
Wu Qiang, Zhang Wei, Yang Huiting, et al. Application of particle swarm optimization based on beetle antennae search algorithm in PID parameter tuning[J]. Electronic Science and Technology, 2020, 33(6):18-23.
|