电子科技 ›› 2023, Vol. 36 ›› Issue (12): 55-63.doi: 10.16180/j.cnki.issn1007-7820.2023.12.008

• • 上一篇    下一篇

自适应多目标遗传算法的集成剪枝用于人脸表情识别

陈星,李丹杨,何庆   

  1. 贵州大学 大数据与信息工程学院,贵州 贵阳 550025
  • 收稿日期:2022-07-25 出版日期:2023-12-15 发布日期:2023-12-05
  • 作者简介:陈星(1998-),男,硕士研究生。研究方向:数据挖掘和集成剪枝。|李丹杨(1991-),女,博士,副教授。研究方向:数据挖掘、集成剪枝和人脸表情识别。|何庆(1982-),男,博士,副教授。研究方向:优化算法、数据融合和智能计算。
  • 基金资助:
    国家自然科学基金(62166006);贵州省科技计划项目(黔科合平台人才[2018]5781)

Adaptive Multi-Objective Genetic Algorithm with Ensemble Pruning for Facial Expression Recognition

CHEN Xing,LI Danyang,HE Qing   

  1. College of Big Data and Information Engineering,Guizhou University,Guiyang 550025, China
  • Received:2022-07-25 Online:2023-12-15 Published:2023-12-05
  • Supported by:
    National Natural Science Foundation of China(62166006);Guizhou Science and Technology Plan Project (Qiankehe Platform Talent [2018] 5781)

摘要:

在集成剪枝中,为了同时高效地选择优质、独立的分类器,文中提出了一种新的动态自适应交叉策略的遗传算法用于分类器的集成剪枝。该方法使用轮盘赌和贪婪策略动态更新每个交叉策略的优先级,根据优先级计算每个策略被选中的概率,从而在算法迭代过程中自适应选择不同的交叉策略。此外,该方法考虑了交叉概率和变异概率动态自适应变化,并使用大多数投票法对挑选出来的分类器进行集成以获得最终结果。将文中所提方法与一些集成剪枝方法在5个真实人脸表情数据集上进行对比,实验结果表明文中所提该方法可以选出效果更好、冗余度更低的分类器,并在CK+数据集上具有22.50%的最低误差。

关键词: 人脸表情识别, 集成剪枝, 多目标遗传算法, 轮盘赌, 自适应交叉策略, 动态交叉概率, 动态突变概率, 大多数投票

Abstract:

In ensemble pruning,a new genetic algorithm with dynamically adaptive crossover strategies is proposed for the ensemble pruning of classifiers to simultaneously and efficiently select high-quality,independent classifiers.The method dynamically updates the priority of each crossover strategy using roulette wheel blocking and greedy strategies,calculates the probability of each strategy being selected based on the priority, and thus adaptively selecting different crossover strategies during the iteration of the algorithm.The method also considers the dynamic adaptive change of crossover probability and mutation probability and integrates the selected classifiers using majority voting to obtain the final result.The proposed method in the study is compared with some ensemble pruning methods on five real face expression data sets.The experimental results show that the proposed method can select classifiers with better results and lower redundancy,and it has the lowest error of 22.50% on the CK+ data set.

Key words: face expression recognition, ensemble pruning, multi-objective genetic algorithm, roulette wheel blocking, adaptive crossover strategy, dynamic crossover probability, dynamic mutation probability, majority voting

中图分类号: 

  • TP3