电子科技 ›› 2023, Vol. 36 ›› Issue (10): 95-102.doi: 10.16180/j.cnki.issn1007-7820.2023.10.013

• • 上一篇    

基于多源数据关联融合的交通图像深度补全技术

王鸽,杨睿华,惠维,赵季中   

  1. 西安交通大学 计算机科学与技术学院,陕西 西安 710049
  • 收稿日期:2022-07-16 出版日期:2023-10-15 发布日期:2023-10-20
  • 作者简介:王鸽(1991-),女,博士,副教授。研究方向:数据融合。
  • 基金资助:
    国家重点研发计划(2020YFB2104000)

Deep Completion Based on Multi-Source Data Association Fusion

WANG Ge,YANG Ruihua,XI Wei,ZHAO Jizhong   

  1. School of Computer Science and Technology,Xi'an Jiaotong University,Xi'an 710049,China
  • Received:2022-07-16 Online:2023-10-15 Published:2023-10-20
  • Supported by:
    National Key R&D Program of China(2020YFB2104000)

摘要:

随着城市化进程的加速,智慧交通领域得到了越来越多的关注。利用深度补全技术提取物体深度信息对实现车辆目标跟踪、目标间距离计算等任务具有重要作用,但在实际中收取的多源深度补全数据存在关联偏差,导致产生较难纠正的精度误差。针对该问题,文中研究了基于多源数据关联融合的深度补全技术。该技术通过计算多通道置信度增强深度图,将图像和毫米波雷达点云数据进行更精准的数据层逐点关联。通过设计多尺度注意力融合模块,实现了对多粒度关联数据的自适应融合,生成了高质量的深度图。文中在公开的nuScenes数据集中开展了大量实验,实验结果表明文中所提方法平均绝对误差为1.142 m,低于现有基准方法的1.472 m

关键词: 智慧交通, 多源数据融合, 深度补全, 深度学习, 注意力机制, 自适应融合

Abstract:

With the acceleration of urbanization, the intelligent transportation has received more and more attention. Among them, the use of depth completion technology to extract the depth information of objects plays an important role in the realization of vehicle target tracking, distance calculation between targets and other tasks. However, multi-source depth completion data collected in practice often have correlation bias, resulting in knotty errors. In this regard, this study studies the depth completion technology based on multi-source data association fusion. The proposed technology enhances the depth map by calculating multi-channel confidence, and performs more accurate point-by-point correlation between the image and the millimeter-wave radar point cloud data. By designing a multi-scale attention fusion module, the adaptive fusion of multi-granularity associated data is realized to generate high-quality depth maps. In this study, a large number of experiments have been carried out in the public nuScenes data set. The experimental results show that the mean absolute error of our method is 1.142 m, which is lower than the 1.472 m of the existing benchmark method.

Key words: intelligent transportation, multi-source data fusion, depth completion, deep learning, attention mechanism, adaptive combination

中图分类号: 

  • TP391