[1] |
Zhang J Q, Long C J, Wang Y X, et al. A two-stage at-tentive network for single image super-resolution[J]. I-EEE Transactions on Circuits and Systems for Video Technology, 2021, 23(6):1-14.
|
[2] |
Dong C, Loy C C, He K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281
|
[3] |
Dong C, Loy C C, Tang X. Accelerating the super-resolution convolutional neural network[C]. Las Vegas: Proceedings of the European Conference on Computer Vision, 2016.
|
[4] |
Shi W, Caballero J, Huszar F, et al. Real-time single im-age and video super-resolution using an efficient subpixel convolutional neural network[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[5] |
Kim J, Lee J K, Lee K M. Accurate image super-resol-ution using very deep convolutional networks[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[6] |
Leding C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[7] |
Lim B, Son S, Kim H. Enhanced deep residual networks for single image super-resolution[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017.
|
[8] |
Tong T, Li G, Liu X, et al. Image super-resolution using dense skip connections[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017.
|
[9] |
Zhang Y, Tian Y, Kong Y, et al. Residual dense network for image super-resolution[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|
[10] |
Haris M, Shakhnarovich G. Deep back-projection netw-orks for super-resolution[C]. Salt Lake City: Proceeding-s of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|
[11] |
Liu Z S, Wang L W, Li C T, et al. Hierarchical back pr-ojection network for image super-resolution[C]. Long Beach: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019.
|
[12] |
Liu Z S, Wang L W, Li C T. Image super-resolution via attention based back projection networks[J]. ICCV Workshops, 2019, 10(76):3517-3525.
|
[13] |
Li Z, Yang J, Liu Z. Feedback network for image super-resolution[C]. Long Beach: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
[14] |
Lee J, Park J, Lee K, et al. FBRNN: Feedback recurrent neural network for extreme image super-resolution[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2020.
|
[15] |
Behjati P, Rodriguez P, Mehri A, et al. Hierarchical resid-ual attention network for single image super-resolution[EB/OL].(2020-2-08) [2021-2-11]https://arxiv.org/pdf/2012.04578.
|
[16] |
秦兴, 高晓琪, 陈滨. 基于压缩卷积神经网络的图像超分辨率算法[J]. 电子科技, 2020, 33(5):1-8.
|
|
Qin Xing, Gao Xiaoqi, Chen Bin. Image super-resolution algorithm based on squeeze net convolution neural network[J]. Electronic Science and Technology, 2020, 33(5):1-8.
|
[17] |
顾伟, 李菲菲, 陈虬. 基于多特征融合的行人检测方法[J]. 电子科技, 2021, 34(5):29-34.
|
|
Gu Wei, Li Feifei, Chen Qiu. Pedestrian detection algor-ithm based on multiple feature fusion[J]. Electronic S-cience and Technology, 2021, 34(5):29-34.
|
[18] |
Bevilacqua M, Roumy A, Guillemot C. Low complexity singleimage super-resolution based on nonnegative neighbor embedding[J]. Proceedings British Machine Vision Conference, 2012, 135(10)1-10.
|
[19] |
Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations[C]. Heidelberg: Proceedings of the International Conference on Curves and Surfa-ces, 2010.
|
[20] |
Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. Barcelona: Proceedings the Eighth IEEE International Conference on Computer Vision, 2001.
|
[21] |
Huang J B, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars[C]. Boston: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
[22] |
Matsui Y, Ito K, Aramaki Y, et al. Sketch-based manga retrieval using manga 109 data set[J]. Multimedia Tools and Applications, 2017, 76(20):21811-21838.
doi: 10.1007/s11042-016-4020-z
|
[23] |
Kingma D P, Ba J. Adam: A method for stochastic op-timization[C]. San Diego: Proceedings of the International Conference on Learning Representations, 2015.
|
[24] |
Yang W, Zhang X, Tian Y, et al. Deep learning for single image super-resolution:A brief review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 21(12):3106- 3121.
|