电子科技 ›› 2023, Vol. 36 ›› Issue (4): 65-70.doi: 10.16180/j.cnki.issn1007-7820.2023.04.009

• • 上一篇    下一篇

基于多特征门控反馈残差网络的超分辨率图像重建算法

孙红,张玉香   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2021-10-29 出版日期:2023-04-15 发布日期:2023-04-21
  • 作者简介:孙红(1964-),女,博士,副教授。研究方向:大数据与云计算、控制科学与工程、模式识别与智能系统。|张玉香(1997-),女,硕士研究生。研究方向:计算机视觉与图像处理。
  • 基金资助:
    国家自然科学基金(61472256);国家自然科学基金(61170277);国家自然科学基金(61703277)

Super-Resolution Image Reconstruction Algorithm Based on Multi-Feature Gated Feedback Residual Network

SUN Hong,ZHANG Yuxiang   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093, China
  • Received:2021-10-29 Online:2023-04-15 Published:2023-04-21
  • Supported by:
    National Natural Science Foundation of China(61472256);National Natural Science Foundation of China(61170277);National Natural Science Foundation of China(61703277)

摘要:

针对超分辨率重建领域中低分辨率图像特征利用不充分的问题,文中基于反馈机制与注意力机制,提出了一种多特征门控反馈残差网络。该网络模型结构简单,以循环的方式实现了网络参数复用,可以有效地节省计算资源。此外,对网络迭代中的输出特征进行保留也可实现多特征融合。采用进一步的特征精炼模块将重建后的高分辨率图像特征进行特征提取,得到了更好的重建效果。在5种测试数据集上的实验结果表明,当缩放因子为4时,该网络的峰值信噪比分别为32.50 dB、28.83 dB、27.75 dB、26.65 dB和31.12 dB。与对比网络相比,文中所提算法的测试结果显著提升。

关键词: 卷积神经网络, 残差网络, 反馈机制, 注意力机制, 门控单元, 多特征, 特征提取, 超分辨率重建

Abstract:

In view of the problem of insufficient feature utilization of low-resolution image in super-resolution reconstruction, a multi-feature gated feedback residual network is proposed based on feedback mechanism and attention mechanism. The network has a simple structure and realizes the reuse of network parameters with a circular way, which can save compute resource effectively. The output features of network iteration are retained to achieve multi-feature fusion. In addition, a further feature refine block is used to extract the reconstructed high-resolution image features to obtain better reconstruction result. Experimental results on five test data sets show that when the scale factor is 4, the peak signal-to-noise ratio of the proposed network is 32.50 dB, 28.83 dB, 27.75 dB, 26.65 dB and 31.12 dB, respectively. Compared with the comparison networks, the test results of the proposed algorithm are significantly improved.

Key words: convolutional neural network, residual network, feedback mechanism, attention mechanism, gated unit, multi-feature, feature extraction, super-resolution reconstruction

中图分类号: 

  • TP391.41