电子科技 ›› 2022, Vol. 35 ›› Issue (3): 38-44.doi: 10.16180/j.cnki.issn1007-7820.2022.03.006
纪玲玉,高永彬,赵呈陆,汤先华,徐凯成,徐嘉诚
出版日期:
2022-03-15
发布日期:
2022-04-02
基金资助:
Lingyu JI,Yongbin GAO,Chenglu ZHAO,Xianhua TANG,Kaicheng XU,Jiacheng XU
Online:
2022-03-15
Published:
2022-04-02
Supported by:
摘要:
目前卷积神经网络已成为腹部动脉血管分割领域的研究热点,但经典的卷积网络存在分割精度低和分割血管不连续的问题。为此,文中提出了基于改进3D全卷积网络的腹部动脉血管分割算法。该方法在网络的编码路径上构造不同尺度的侧输入,并将侧输入卷积后的图像与下采样卷积后的图像进行融合,提取更多的特征信息。同时,网络中嵌入了新的多尺度特征提取模块,该模块将通道注意力与密集扩张卷积进行了融合,有效地捕获了更高层次的特征信息。对腹部动脉血管进行分割的结果表明,与其他分割方法相比,所提方法在直观性和定量性上均有提高,证明了该方法能够提升血管分割精度。
中图分类号:
纪玲玉,高永彬,赵呈陆,汤先华,徐凯成,徐嘉诚. 基于3D全卷积网络的腹部动脉CTA分割算法[J]. 电子科技, 2022, 35(3): 38-44.
Lingyu JI,Yongbin GAO,Chenglu ZHAO,Xianhua TANG,Kaicheng XU,Jiacheng XU. CTA Segmentation Algorithm of Abdominal Artery Based on 3D Fully Convolutional Network[J]. Electronic Science and Technology, 2022, 35(3): 38-44.
[1] | 高跃. 基于动脉期图像的腹主动脉分割研究[D]. 沈阳:东北大学, 2014. |
Gao Yue. Research of abdominal aorta segmentation based on arterial phase CT image[D]. Shenyang:Northeastern University, 2014. | |
[2] | 孙浩. CTA 影像中血管三维分割算法的研究[D]. 武汉:中南民主大学, 2013. |
Sun Hao. The research of vessel 3D segmentation algorithm in CTA images[D].Wuhan:South-Central University for Nationalities, 2013. | |
[3] | 郭杰龙. CT图像的腹部血管三维分割[D]. 武汉:中南民族大学, 2015. |
Guo Jielong. Abdominal aorta segmentation based on CT image[D].Wuhan:South-Central University for Nationalities, 2015. | |
[4] | 沈烨, 方志军, 高永彬. 嵌入注意力机制的多模型融合冠脉CTA分割算法[J].计算机科学与探索, 2020(9):1602-1611. |
Shen Ye, Fang Zhijun, Gao Yongbin. Multi-model fusion of coronary CTA segmentation based on attention mechanism[J].Journal of Frontiers of Computer Science and Technology, 2020(9):1602-1611. | |
[5] | Soomro M H, Giunta G, Laghi A, et al. Segmenting MR images by level-set algorithms for perspective colorectal cancer diagnosis [C].Portugal:Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, 2017. |
[6] | Chen Y T. A novel approach to segmentation and measurement of medical image using level set methods[J]. Magnetic Resonance Imaging, 2017,39(4):175-193. |
[7] | Wang Y, Liatsis P. An automated method for segmentation of coronary arteries in coronary CT imaging [C].London:Proceedings of the Developments in E-systems Engineering, 2010. |
[8] | Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90. |
[9] | Simonyan K, Zissermny A. Very deep convolutional networks for large-scale image recognition[J]. Computer Vision and Pattern Recognition, 2015,140(9):1-14. |
[10] | Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C].Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
[11] | Wang T, Wu D J, Coates A, et al. End-to-end text recognition with convolutional neural networks [C].Tsukuba:Proceedings of the Twenty-first International Conference on Pattern Recognition, 2012. |
[12] | Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,39(4):640-651. |
[13] | Ronneberge O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation [C].Munich:Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015. |
[14] | Li X M, Chen H, Qi X J, et al. H-DenseUNet:Hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018,37(12):2663-2674. |
[15] | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C].Piscataway:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[16] | Mohammed A, Yildirim S, Farup I, et al. Y-Net:A deep convolutional neural network for polyp detection [C].Newcastle:Proceedings of the British Machine Vision Conference, 2018. |
[17] | 贝琛圆, 于海滨, 潘勉, 等. 基于改进U-Net网络的腺体细胞图像分割算法[J]. 电子科技, 2019,32(11):18-22. |
Bei Chenyuan, Yu Haibin, Pan Mian, et al. Gland cell image segmentation algorithm based on improved U-Net network[J]. Electronic Science and Technology, 2019,32(11):18-22. | |
[18] | Bai W, Suzuki H, Qin C, et al. Recurrent neural networks for aortic image sequence segmentation with sparse annotations [C].Granada:Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018. |
[19] | Huang W M, Huang L, Lin Z P, et al. Coronary artery segmentation by deep learning neural networks on computed tomographic coronary angiographic image[J].IEEE Engineering in Medicine and Biology Society, 2018(8):608-611. |
[20] | Milletari F, Navab N, Ahmadi S A. V-Net:Fully convolutional neural networks for volumetric medical image segmentation [C].Stanford:Proceedings of the Fourth International Conference on 3D Vision, 2016. |
[21] | Gibson E, Giganti F, Hu Yiping, et al. Automatic multi-organ segmentation on abdominal CT with dense V-networks[J]. IEEE Transactions on Medical Imaging, 2018,37(8):1822-1834. |
[22] | Wang Y, Zhou Y Y, Shen W, et al. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion[J]. Medical Image Analysis, 2019,55(2):88-102. |
[23] | Holger R R, Shen C, Hirohisa O, et al. A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation [C].Granada:Proceedings of the International on Medical Image Computing and Computer-Assisted Intervention, 2018. |
[24] | Kakeya H, Okada T, Oshiro Y. 3D U-JAPA-Net:Mixture of convolutional networks for abdominal multi-organ CT segmentation [C].Granada:Proceedings of the International on Medical Image Computing and Computer-Assisted Intervention, 2018. |
[25] | Casamitjana A, Cata M, Sanchez I, et al. Cascaded V-Net using ROI masks for brain tumor segmentation [C].Quebec City:Proceedings of the International on Medical Image Computing for Computer Assisted Intervention, 2017. |
[26] | Zhao N N, Tong N, Ruan D, et al. Fully automated pancreas segmentation with two-stage 3D convolutional neural networks [C].Shenzhen:Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019. |
[27] | Chen L C, Papangreou G, Kokkinos I, et al. DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transaction on Pattern Analysis Machine Intelligence, 2018,40(4):834-848. |
[28] | Gu Z W, Cheng J, Fu H Z, et al. CE-Net:context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019,38(10):2281-2292. |
[29] | Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning [C].San Francisco:Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence, 2017. |
[30] | Hu J, Shen L, Albanie S, et al. Squeeze-and-Excitation networks[J]. IEEE Transactins on Pattern Analysis Machine Intelligence, 2018,42(8):2011-2023. |
[31] | 刘敏, 方志军, 高永彬. 多阶段冠状动脉 CTA 三维分割算法[J]. 信号处理, 2019,35(11):1911-1918. |
Liu Min, Fang Zhijun, Gao Yongbin. Multi-stage three-dimensional segmentation algorithm for coronary CTA[J]. Journal of Signal Processing, 2019,35(11):1911-1918. | |
[32] | Oktay O, Schlemper J, Folgoc L, et al. Attention U-Net:learning where to look for the pancreas [C].Amsterdam:Proceedings of the Medical Imaging with Deep Learning, 2018. |
[1] | 林潮威,李菲菲,陈虬. 基于深度卷积特征的场景全局与局部表示方法[J]. 电子科技, 2022, 35(4): 20-27. |
[2] | 杨孙运,阚秀. 基于图像和IMU传感器的生物行为分析系统设计[J]. 电子科技, 2022, 35(4): 28-34. |
[3] | 陈汗青,李菲菲,陈虬. 基于三维卷积和哈希方法的视频检索算法[J]. 电子科技, 2022, 35(4): 35-39. |
[4] | 陆尚鸿,李文国. 基于点云边界质心的粗配准方法[J]. 电子科技, 2022, 35(4): 53-59. |
[5] | 邓贞宙,胡钦,赖文升,韩春雷,陶凌. 基于反馈调节的闪烁脉冲稀疏量化电平方法[J]. 电子科技, 2022, 35(3): 1-7. |
[6] | 聂曌,何嘉文,马城城,刘晖. 一种基于WinForm的GPU配置管理系统设计与实现[J]. 电子科技, 2022, 35(3): 65-70. |
[7] | 伍伟嘉,杨俭,袁天辰,邵志慧. 基于支持向量机的轨道结构病害识别研究[J]. 电子科技, 2022, 35(2): 27-33. |
[8] | 李辉,王一丞. 基于CNNCIFG-Attention模型的文本情感分类[J]. 电子科技, 2022, 35(2): 46-51. |
[9] | 邵志慧,杨俭,袁天辰,伍伟嘉. 基于排列熵和支持向量机的轨枕病害诊断[J]. 电子科技, 2022, 35(2): 52-58. |
[10] | 宗圣康,程建鹏,张西良. 基于光斑位置的起重机轨道高度差自动检测方法[J]. 电子科技, 2022, 35(1): 21-28. |
[11] | 方鑫,吴尧辉,吴昊珍. 基于Fluent的电机温度场计算[J]. 电子科技, 2021, 34(12): 30-35. |
[12] | 彭荣杰,彭亚雄,陆安江. 基于改进PCA+SVM的人脸识别系统[J]. 电子科技, 2021, 34(12): 56-61. |
[13] | 张灿,陈玮,尹钟. 基于弱监督宫颈细胞图像的语义分割方法[J]. 电子科技, 2021, 34(12): 68-74. |
[14] | 张莹,刘子龙,万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11): 11-20. |
[15] | 徐洋洋,伞红军,陈久朋,谢飞亚,魏顺祥,王汪林,刘亮,陈佳. FL-DLight3-4000激光器激光熔覆过程温度场数值模拟分析[J]. 电子科技, 2021, 34(11): 1-10. |
|