[1] |
Wu X, Hauptmann A G, Ngo C W. Practical elimination of near-duplicates from web video search[C]. Augsburg:Proceedings of the Fifteenth ACM International Conference on Multimedia, 2007.
|
[2] |
Shang L, Yang L, Wang F, et al. Real-time large scale near-duplicate web video retrieval[C]. Firenze:Proceedings of the Eighteenth ACM International Conference on Multimedia, 2010.
|
[3] |
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
[4] |
Wang L, Bao Y, Li H, et al. Compact CNN based video representation for efficient video copy detection[C]. Reykjavik:Proceedings of the International Conference on Multimedia Modeling, 2017.
|
[5] |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
[6] |
Jiang Y G, Wang J. Partial copy detection in videos: A benchmark and an evaluation of popular methods[J]. IEEE Transactions on Big Data, 2016, 2(1):32-42.
doi: 10.1109/TBDATA.2016.2530714
|
[7] |
Kordopatis-Zilos G, Papadopoulos S, Patras I, et al. Near-duplicate video retrieval by aggregating intermediate CNN layers[C]. Reykjavik:Proceedings of the International Conference on Multimedia Modeling, 2017.
|
[8] |
Douze M, Jégou H, Schmid C, et al. Compact video description for copy detection with precise temporal alignment[C]. Heidelberg:Proceedings of the European Conference on Computer Vision, 2010.
|
[9] |
Tan H K, Ngo C W, Hong R, et al. Scalable detection of partial near-duplicate videos by visual-temporal consistency[C]. Beijing:Proceedings of the Seventeenth ACM International Conference on Multimedia, 2009.
|
[10] |
陆超文, 李菲菲, 陈虬 基于改进哈希算法的图像检索方法[J]. 电子科技, 2020, 33(5):28-32.
|
|
Lu Chaowen, Li Feifei, Chen Qiu An image retrieval algorithm based on improved hashing method[J]. Electronic Science and Technology, 2020, 33(5):28-32.
|
[11] |
Shen L, Hong R C, Zhang H R, et al. Video retrieval with similarity-preserving deep temporal hashing[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019, 15(4):1-16.
|
[12] |
Ji S W, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(1):221-231.
doi: 10.1109/TPAMI.2012.59
|
[13] |
Hara K, Kataoka H, Satoh Y. Learning spatio-temporal features with 3D residual networks for action recognition[C]. Venice:Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017.
|
[14] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]. Las Vegas:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[15] |
Lin K, Yang H F, Hsiao J H, et al. Deep learning of binary hash codes for fast image retrieval[C]. Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2015.
|
[16] |
Soomro K, Zamir A R, Shah M. UCF101: A dataset of 101 human action classes from videos in the wild[EB/OL].(2012-12-01) [2020-10-11]http://crcv.ucf.edu/data/ucf101.php.
|
[17] |
Kuehne H, Jhuang H, Garrote E, et al. HMDB: a large video database for human motion recognition[C]. Barcelona:Proceedings of the International Conference on Computer Vision, 2011.
|
[18] |
Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. Santiago:Proceedings of the IEEE International Conference on Computer Vision,IEEE, 2015.
|
[19] |
Andoni A, Indyk P. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions[C]. Berkeley:Proceedings of the Forty-seventh Annual IEEE Symposium on Foundations of Computer Science, 2006.
|
[20] |
Gong Y, Lazebnik S, Gordo A, et al. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(12),2916-2929.
doi: 10.1109/TPAMI.2012.193
|
[21] |
Liong V E, Lu J, Tan Y P, et al. Deep video hashing[J]. IEEE Transactions on Multimedia, 2016, 19(6):1209-1219.
doi: 10.1109/TMM.2016.2645404
|
[22] |
Dong Y, Li J. Video retrieval based on deep convolutional neural network[C]. Shenzhen:Proceedings of the Third International Conference on Multimedia Systems and Signal Processing, 2018.
|