电子科技 ›› 2022, Vol. 35 ›› Issue (4): 40-46.doi: 10.16180/j.cnki.issn1007-7820.2022.04.007

• • 上一篇    下一篇

基于VMD和BP神经网络的轨道病害诊断方法

华莉,杨俭,袁天辰,宋瑞刚   

  1. 上海工程技术大学 城市轨道交通学院,上海 201620
  • 收稿日期:2020-12-01 出版日期:2022-04-15 发布日期:2022-04-15
  • 作者简介:华莉(1995-),女,硕士研究生。研究方向:轨道结构病害识别及诊断。|杨俭(1962-),男,博士,教授。研究方向:城市轨道交通车辆运行节能技术。
  • 基金资助:
    国家自然科学基金(5207052806);上海市自然科学基金(19ZR1421700);上海工程技术大学研究生创新项目基金

Track Disease Diagnosis Method Based on VMD and BP Neural Network

Li HUA,Jian YANG,Tianchen YUAN,Ruigang SONG   

  1. School of Urban Rail Transit,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2020-12-01 Online:2022-04-15 Published:2022-04-15
  • Supported by:
    National Natural Science Foundation of China(5207052806);Shanghai Natural Science Foundation(19ZR1421700);Postgraduate Innovation Project Fund of Shanghai University of Engineering Science

摘要:

针对从非线性、非稳态的轨枕振动信号中提取病害特征困难的问题,文中提出一种基于变分模态分解和多尺度排列熵的轨道病害特征提取方法,并采用BP神经网络病害诊断模型进行病害识别。利用变分模态分解方法将采集到的振动加速度信号进行分解,得到若干个本征模态分量。计算这些本征模态分量的多尺度排列熵值,将其作为轨道病害的高维特征向量,以实现对轨枕振动信号的降噪和病害特征的提取。通过建立BP神经网络病害诊断模型,将高维特征向量输入到BP网络中进行训练、拟合、验证,并与经验模态分解和BP神经网络结合的方法对比。分析结果表明,文中所提方法识别准确率更高,能够有效地进行病害诊断。

关键词: 变分模态分解, 多尺度排列熵, BP神经网络, 本征模态分量, 降噪, 高维特征向量, 经验模态分解, 病害诊断

Abstract:

In view of the problem of difficulty in extracting disease features from non-linear and unsteady sleeper vibration signals, this study proposes a track disease feature extraction method based on variational modal decomposition and multi-scale permutation entropy, and adopts the BP neural network disease diagnosis model to perform disease identification. The variational modal decomposition method is used to decompose the collected vibration acceleration signals to obtain several eigenmode components. The multi-scale permutation entropy value of these eigenmode components is calculated and used as the high-dimensional feature vector of the track disease to realize the noise reduction of the sleeper vibration signal and the extraction of the disease feature. Through the establishment of a BP neural network disease diagnosis model, high-dimensional feature vectors are input into the BP network for training, fitting, and verification, and compared with the method of combining empirical mode decomposition and BP neural network. The analysis results show that the proposed method has a higher recognition accuracy rate and can effectively diagnose disease.

Key words: variational modal decomposition, multi-scale permutation entropy, BP neural network, eigenmode component, noise reduction, high-dimensional feature vector, empirical mode decomposition, disease diagnosis

中图分类号: 

  • TN911.7