[1] |
丁宇. 高速铁路无砟轨道疲劳损伤及疲劳可靠性研究[D]. 北京:北京交通大学, 2020.
|
|
Ding Yu. Research on fatigue damage and fatigue reliability of high-speed railway ballastless track[D]. Beijing:Beijing Jiaotong University, 2020.
|
[2] |
丁政开. 基于机器视觉的钢轨表面缺陷检测技术研究[D]. 北京:北京交通大学, 2017.
|
|
Ding Zhengkai. Study of inspection technology for rail surface defects based on machine vision[D]. Beijing:Beijing Jiaotong University, 2017.
|
[3] |
Yang D, Li D, Kuang K S C. Fatigue crack monitoring in train track steel structures using plastic optical fiber sensor[J]. Measurement Science and Technology, 2017, 28(10):1-10.
|
[4] |
Li J W, Li G N. Research on fault diagnosis of ZPW-2000K track circuit based on RS-BN algorithm[J]. Technical Vjesnik, 2019, 26(4):1091-1097.
|
[5] |
乔新勇, 顾程, 韩立军, 等. 基于VMD多尺度散布熵的柴油机故障诊断方法[J]. 汽车工程, 2020, 42(8):1139-1144.
|
|
Qiao Xinyong, Gu Cheng, Han Lijun, et al. Diesel engine fault diagnosis method based on VMD and multi-scale dispersion entropy[J]. Automotive Engineering, 2020, 45(8):1139-1144.
|
[6] |
牟伟杰, 石林锁, 蔡艳平, 等. 基于EMD-WVD与LNMF的内燃机故障诊断[J]. 振动与冲击, 2016, 35(23):191-196.
|
|
Mou Weijie, Shi Linsuo, Cai Yanping, et al. IC engine fault diagnosis method based on EMD-WVD and LNMF[J]. Journal of Vibration and Shock, 2016, 35(23):191-196.
|
[7] |
方必武, 刘涤尘, 王波, 等. 基于小波变换和改进萤火虫算法优化LSSVM的短期风速预测[J]. 电力系统保护与控制, 2016, 44(8):37-43.
|
|
Fang Biwu, Liu Dichen, Wang Bo, et al. Short-term wind speed forecasting based on WD-CFA-LSSVM model[J]. Power System Protection and Control, 2016, 44(8):37-43.
|
[8] |
陈鹏飞, 陈卫, 高星伟, 等. LMD和支持向量机相结合的齿轮毂故障诊断方法[J]. 机械科学与技术, 2015, 34(10):1599-1603.
|
|
Chen Pengfei, Chen Wei, Gao Xingwei, et al. Fault diagnosis of gear hub based on LMD and support vector machine[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(10):1599-1603.
|
[9] |
Li X, Ma Z Q, Kang D, et al. Fault diagnosis for rolling bearing based on VMD-FRFT[J]. Measurement, 2020, 155(4):1-17.
|
[10] |
吕明珠, 苏晓明, 刘世勋, 等. 基于VMD-SVM的滚动轴承退化状态识别[J]. 机械设计与制造, 2020(1):96-100.
|
|
Lü Mingzhu, Su Xiaoming, Liu Shixun, et al. Degradation state recognition of rolling bearing based on VMD-SVM[J]. Machine Design and Manufacturing, 2020(1):96-100.
|
[11] |
Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17):1-4.
|
[12] |
张建财, 高军伟. 基于变分模态分解和多尺度排列熵的滚动轴承故障诊断[J]. 噪声与振动控制, 2019, 39(6):181-186.
|
|
Zhang Jiancai, Gao Junwei. Fault diagnosis of train rolling bearing based on variational modal decomposition and multi-scale permutation entropy[J]. Noise and Vibration Control, 2019, 39(6):181-186.
|
[13] |
Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
|
[14] |
刘长良, 武英杰, 甄成钢. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13):3358-3365.
|
|
Liu Changliang, Wu Yingjie, Zhen Chenggang. Rolling bearing fault diagnosis based on variational modal decomposition and fuzzy C means clustering[J]. Proceedings of the CSEE, 2015, 35(13):3358-3365.
|
[15] |
王育炜, 韩秋实, 王红军, 等. 滚动轴承VMD能量熵与PNN故障模式识别研究[J]. 组合机床与自动化加工技术, 2020, 4(4):47-50.
|
|
Wang Yuwei, Han Qiushi, Wang Hongjun, et al. Research on VMD energy entropy and PNN fault pattern recognition of rolling bearings[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2020, 4(4):47-50.
|
[16] |
张长青, 杨楠. 基于混合神经网络的车牌字符识别技术[J]. 电子科技, 2019, 32(9):51-54.
|
|
Zhang Changqing, Yang Nan. License plate character recognition technology based on hybrid neural network[J]. Electronic Science and Technology, 2019, 32(9):51-54.
|
[17] |
孟卫东, 刘畅, 张伟, 等. 基于BP神经网络的变压器故障诊断[J]. 通信电源技术, 2020, 37(2):84-86.
|
|
Meng Weidong, Liu Chang, Zhang Wei, et al. Transformer fault diagnosis based on BP neural network[J]. Telecom Power Technology, 2020, 37(2):84-86.
|
[18] |
邓文杰. 基于聚粒子群算法的神经网络权值优化方法[J]. 计算机技术与发展, 2017, 27(10):16-18.
|
|
Deng Wenjie. A neural network weights optimization method based on clustering particle swarm optimization[J]. Computer Technology and Development, 2017, 27(10):16-18.
|
[19] |
翟婉明. 车辆-轨道耦合动力学[M].4版. 北京: 科学出版社, 2007.
|
|
Zhai Wanming. Vehicle-Track coupling dynamics[M].4th ed. Beijing: Science Press, 2007.
|
[20] |
许敬成, 陈长征. BP神经网络在齿轮箱故障诊断中的应用[J]. 噪声与振动控制, 2018, 38(S2):673-677.
|
|
Xu Jingcheng, Chen Changzheng. Application of BP neural network in fault diagnosis of gear boxs[J]. Noise and Vibration Control, 2018, 38(S2):673-677.
|
[21] |
郭珊山, 吴朝晖, 汪庆, 等. 基于小波分析和神经网络的便携式哮喘病监测系统的校准研究[J]. 电子设计工程, 2017, 25(21):90-95.
|
|
Guo Shanshan, Wu Zhaohui, Wang Qing, et al. Calibration study of portable asthma monitoring system based on the wavelet analysis and neural network[J]. Electronic Design Engineering, 2017, 25(21):90-95.
|