电子科技 ›› 2019, Vol. 32 ›› Issue (6): 43-48.doi: 10.16180/j.cnki.issn1007-7820.2019.06.009

• • 上一篇    下一篇

BP神经网络预测电极速度影响放电参数分析

管胜1,阮方鸣2,周奎1,苏明2,王珩2,邓迪3,李佳4   

  1. 1. 贵州大学 大数据与信息工程学院,贵州 贵阳 550025
    2. 贵州师范大学 大数据与计算机科学学院,贵州 贵阳 550001
    3. 贵州省机械电子产品质量监督检验院,贵州 贵阳 550016
    4. 深圳振华富电子有限公司,广东 深圳 518109
  • 收稿日期:2018-06-18 出版日期:2019-06-15 发布日期:2019-07-01
  • 作者简介:管胜(1992-),男,硕士研究生。研究方向:电路与系统。|阮方鸣(1958-),男,博士,教授。研究方向:电磁兼容设计、静电放电、电磁生物效应、信息对抗与大数据安全。
  • 基金资助:
    贵州省静电与电磁防护科技创新人才团队(黔科合平台人才[2017]5653);2016年度中央引导地方科技发展专项资金项目(黔科中引地[2016]4006号)

Analysis of Discharge Parameters Affected by BP Neural Network Predicting Electrode Velocity

GUAN Sheng1,RUAN Fangming2,ZHOU Kui1,SU Ming2,WANG Heng2,DENG Di3,LI Jia4   

  1. 1. School of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China
    2. School of Big Data and Computer Sciences,Guizhou Normal University,Guiyang 550001,China
    3. Guizhou Machinery and Electronic Products Quality Supervision and Inspection Institute,Guiyang 550016,China
    4. Shenzhen Zhenhua Fu Electronics Limited Company,Shenzhen 518109,China
  • Received:2018-06-18 Online:2019-06-15 Published:2019-07-01
  • Supported by:
    Guizhou Province Electrostatic and Electromagnetic Protection Science and Technology Innovation Talent Team (Yankehe Platform Talent [2017] 5653);2016 Central Government Leading Local Science and Technology Development Special Fund Project (Zhongke Zhongdi [2016] No.4006)

摘要:

文中结合小间隙放电的双过程模型,探讨电极移动引起放电场强和压强的变化对放电间隙内部相关因子的影响。文中同时利用BP神经网络预测分析电极移动速度对放电参数的影响。基于静电放电电极移动速度效应检测仪,不断改变电极移动速度,反复多次进行放电实验并统计试验数据。利用BP神经网络对已测实验数据进行训练、学习,从而预测不同速度与压强下对应的电流上升时间和峰值电流大小。实验结果表明,放电电流的上升时间与电极移动速度不存在相关性。根据新方法预测出的不同速度下的峰值电流和实际大小相比准确率更高。研究结果对探寻非接触式静电放电的规律和制定静电放电标准有一定的参考价值。

关键词: 静电放电, 电极移动速度, BP神经网络, 学习与训练, 预测, 规律

Abstract:

The dual-process model of small gap discharge was used to investigate the influence of the change of field intensity and pressure on the internal correlation factors of the discharge gap, and the BP neural network was applied to predict and analyze the influence of the electrode moving speed on the discharge parameters. Based on the electrostatic discharge electrode moving speed effect detector, the electrode moving speed was continuously changed, and the discharge experiment had been repeated several times to obtain and statistically calculated the test data. Meanwhile, BP neural network was used to train and learn the measured experimental data, so as to predict the current rise time and peak current at different speeds and pressures. The results showed that there was no correlation between the rising time of the discharge current and the moving speed of the electrode. According to the new method, the accuracy of peak current at different speeds was higher than that of the actual size. The research results was of great reference value in exploring the law of non-contact electrostatic discharge and the formulation of electrostatic discharge standards.

Key words: electrostatic discharge, electrode movement speed, BP neural network, learning and training, prediction, disciplinary

中图分类号: 

  • TP183