[1] |
高良友, 黄梦醒 . 综合用户特征和项目属性的协作过滤推荐算法改进[J]. 海南大学学报(自然科学版), 2015,33(2):135-140.
|
|
Gao Liangyou, Huang Mengxing . Improved collaborative filtering recommendation algorithm for integrated user features and project attributes[J]. Journal of Hainan University(Natural Science Edition), 2015,33(2):135-140.
|
[2] |
王晓军 . 利用项目属性和偏好改进协同过滤推荐[J]. 北京邮电大学学报, 2014,37(6):68-71.
|
|
Wang Xiaojun . Employing item attribute and preference to enhance the collaborative filtering recommendation[J]. Journal of Beijing University of Posts and Telecommunications, 2014,37(6):68-71.
|
[3] |
于洪, 李俊华 . 一种解决新项目冷启动问题的推荐算法[J]. 软件学报, 2015,26(6):1395-1408.
|
|
Yu Hong, Li Junhua . Algorithm to solve the cold-start problem in new item recommendations[J]. Journal of Software, 2015,26(6):1395-1408.
|
[4] |
王建芳, 刘冉东, 谷振鹏 , 等. 一种改进专家信任的协同过滤推荐算法[J]. 计算机应用研究, 2018(2):354-357.
|
|
Wang Jianfang, Liu Randong, Gu Zhenpeng , et al. Improved expert trust collaborative filtering recommendation algorithm[J]. Application Research of Computers, 2018(2):354-357
|
[5] |
硕良勋, 柴变芳, 张新东 . 基于改进最近邻的协同过滤推荐算法[J]. 计算机工程与应用, 2015,51(5):137-141.
|
|
Shuo Liangxun, Chai Bianfang, Zhang Xingdong . Collaborative filtering algorithm based on improved nearest neighbors[J]. Computer Engineering and Applications, 2015,51(5):137-141.
|
[6] |
焦明海, 陈晓芳, 陈旭 , 等. 基于贝叶斯网络认知反馈的协同过滤推荐[J]. 控制工程, 2017,24(7):1310-1317.
|
|
Jiao Minghai, Chen Xiaofang, Chen Xu , et al. Collaborative filtering based on bayesian network and cognitive feedback[J]. Control Engineering of China, 2017,24(7):1310-1317.
|
[7] |
肖宇航, 吴明礼 . 改进用户相似度的协同过滤算法应用研究[J]. 信息技术, 2018(7):138-142.
|
|
Xiao Yuhang, Wu Mingli . The application and research on advanced user similarity on user-based collaborative filtering[J]. Information Technology, 2018(7):138-142.
|
[8] |
肖文强, 姚世军, 吴善明 . 一种改进的Top-N协同过滤推荐算法[J]. 计算机应用研究, 2018,35(1):105-108.
|
|
Xiao Wenqiang, Yao Shijun, Wu Shanming . Improved Top-N collaborative filtering recommend algorithm[J]. Application Research of Computers, 2018,35(1):105-108.
|
[9] |
王余斌, 王成良 . 基于用户评论评分与信任度的协同过滤算法[J]. 计算机应用研究, 2018,35(5):1368-1371.
|
|
Wang Yubin, Wang Chengliang, Wen Junhao . Research on collaborative filtering recommendation algorithm based on ratings reviews and user trust[J]. Application Research of Computers, 2018,35(5):1368-1371.
|
[10] |
李熠晨, 陈莉, 石晨晨 , 等. 采用信任网络增强的协同过滤算法[J]. 计算机应用研究, 2018,35(1):116-120.
|
|
Li Yichen, Chen Li, Shi Chenchen , et al. Enhanced collaborative filtering adopting trust network[J]. Application Research of Computers, 2018,35(1):116-120.
|
[11] |
王宝林, 韩帅帅, 张德海 . 一种基于社会化标签的协同过滤推荐算法[J]. 电子科技, 2015,28(7):90-93.
|
|
Wang Baolin, Han Shuaishuai, Zhang Dehai . Collaborative filtering recommendation algorithm based on social tags[J]. Electronic Science and Technology, 2015,28(7):90-93.
|
[12] |
张雅科 . 基于模糊权重相似性的协同过滤算法研究[J]. 电子科技, 2015,28(7):111-114.
|
|
Zhang Yake . A study of fuzzy weighted similarity measure for collaborative filtering recommender systems[J]. Electronic Science and Technology, 2015,28(7):111-114.
|
[13] |
Petroni F, Querzoni L, Beraldi R , et al. LCBM:a fast and lightweight collaborative filtering algorithm for binary ratings[J]. Journal of Systems & Software, 2016,117(6):583-594.
|
[14] |
李欢 . 新型协同过滤推荐算法研究[D]. 合肥:安徽大学, 2017.
|
|
Li Huan . Research on a new collaborative filtering recommendation algorithm[D]. Hefei:Anhui University, 2017.
|
[15] |
肖宇航 . 行为分析技术在用户管理系统中的应用研究[D]. 北京:北方工业大学, 2018.
|
|
Xiao Yuhang . Application and research of behavioral analysis technology in user management system[D]. Beijing:North China University of Technology, 2018
|
[16] |
李玉省 . 个性化推荐系统关键技术研究[D]. 北京:北京邮电大学, 2016.
|
|
Li Yusheng . Research on some key technologies of personalization recommendation system[D]. Beijing:Beijing University of Posts and Telecommunications, 2016.
|