电子科技 ›› 2019, Vol. 32 ›› Issue (3): 53-57.doi: 10.16180/j.cnki.issn1007-7820.2019.03.011

• • 上一篇    下一篇

一种改进的LeNet网络

胡德敏,程普芳   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2018-03-18 出版日期:2019-03-15 发布日期:2019-03-01
  • 作者简介:胡德敏(1963-),男,博士,副教授。研究方向:计算机网络、分布式计算、云计算。|程普芳(1991-),男,硕士研究生。研究方向:图像分类、深度学习。
  • 基金资助:
    国家自然科学基金(61170277);国家自然科学基金(61472256);上海市教委科研创新重点项目(12zz17);上海市一流学科建设项目(S1201YLXK)

An Improved LeNet Network

HU Demin,CHENG Pufang   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2018-03-18 Online:2019-03-15 Published:2019-03-01
  • Supported by:
    National Natural Science Foundation of China(61170277);National Natural Science Foundation of China(61472256);Key Project of Scientific Research and Innovation of Shanghai Municipal Education Commission(12zz17);First Class Construction Project of Shanghai(S1201YLXK)

摘要:

针对卷积神经网络中存在的学习效率低、收敛速度慢、训练时间长等问题,文中提出一种改进的LeNet卷积神经网络模型。该模型使用卷积核大小为3,步幅为2的卷积层代替原有的池化层,并在每层激活函数之前添加批量归一化层。在Mnist和Cifar-10数据集上放入实验证明,相比于传统的LeNet网络,所提出的卷积神经网络提高了分类准确率,并且具有更快的收敛速度及更短的训练时间。

关键词: 图像分类, 卷积神经网络, 批量归一化, 池化层, 卷积核, 随机梯度下降法

Abstract: Aim

ing at the problems of low learning efficiency, slow convergence and long training time in convolutional neural networks, this paper presented an improved LeNet convolutional neural network model. The model used a convolutional kernel whose convolution scale was set as 3 and stride was set as 2 instead of the original pooled layer, and added a batch normalization layer before each activation function layer. Experiments on the Mnist dataset showed that compared with the traditional LeNet network, the convolutional neural network proposed in this paper improved the accuracy rate and had faster convergence speed and shorter training time.

Key words: image classification, convolutional neural network, batch normalization, pooling layer, convolution kernel, stochastic gradient descent.

中图分类号: 

  • TP183