[1] |
吕明, 罗新, 刘正云. 无人直升机线路巡检技术实用化研究[J]. 湖北电力, 2012, 36(3):10-12.
|
|
Lü Ming, Luo Xin, Liu Zhengyun. Unmanned helicopter study on the application of inspection and detections of power transmission line[J]. Hubei Electric Power, 2012, 36(3):10-12.
|
[2] |
张少平. 输电线路典型目标图像识别技术研究[D]. 南京: 南京航空航天大学, 2012.
|
|
Zhang Shaoping. Research on image recognition for typical objects of transmission line[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
|
[3] |
王珂珂. 基于样本生成的输电线路多目标检测算法研究[D]. 阜新: 辽宁工程技术大学, 2020.
|
|
Wang Keke. Research on multi-target detection algorithm of transmission line based on sample generation[D]. Fuxin: Liaoning Technical University, 2020.
|
[4] |
郝帅, 马瑞泽, 赵新生, 等. 基于卷积块注意模型的YOLO-v3输电线路故障检测方法[J]. 电网技术, 2021, 45(8):2979-2987.
|
|
Hao Shuai, Ma Ruize, Zhao Xinsheng, et al. Fault detection of YOLOv3 transmission line based on convolutional block attention model[J]. Power System Technology, 2021, 45(8):2979-2987.
|
[5] |
易继禹, 陈慈发, 龚国强. 基于改进Faster RCNN的输电线路航拍绝缘子检测[J]. 计算机工程, 2021, 47(6):292-298.
doi: 10.1063/1.31442
|
|
Yi Jiyu, Chen Cifa, Gong Guoqiang. Aerial photo insulator detection of transmission line based on improved Faster RCNN[J]. Computer Engineering, 2021, 47(6):292-298.
doi: 10.1063/1.31442
|
[6] |
颜宏文, 陈金鑫. 基于改进YOLOv3的绝缘子串定位与状态识别方法[J]. 高电压技术, 2020, 46(2):423-432.
|
|
Yan Hongwen, Chen Jinxin. Insulator string positioning and state recognition method based on improved YOLOv3 algorithm[J]. High Voltage Engineering, 2020, 46(2):423-432.
|
[7] |
陈炳煌, 缪希仁, 江灏, 等. 融合粒子群与极限学习机的输电杆塔灾害分类方法[J]. 郑州大学学报(工学版), 2021, 42(4):77-83.
|
|
Chen Binghuang, Miao Xiren, Jiang Hao, et al. A method for disaster status classification of transmission line towers by integrating particle swarm optimization and extreme learning machine[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(4):77-83.
|
[8] |
吴鹏, 姜海波, 王永强, 等. 参基于图像切片的移动端输电线路鸟类检测算法研究[J]. 计算机与数字工程, 2021, 49(4):846-851.
|
|
Wu Peng, Jiang Haibo, Wang Yongqiang, et al. Research on bird detection algorithm of transmission line based on image slice[J]. Computer and Digital Engineering, 2021, 49(4):846-851.
|
[9] |
Liao X F, Zeng X F. Review of target detection algorithm based on deep learning[C]. Chongqing: Proceedings of the International Conference on Artificial Intelligence and Communication Technology, 2020.
|
[10] |
Zhao Z M, Lei X Y. Improved real-time pedestrian detection method[C]. Dalian: IEEE the Seventh International Conference on Computer Science and Network Technology, 2019.
|
[11] |
Chen L Y, Zheng M C, Duan S Q, et al. Underwater target recognition based on improved YOLOv4 neural network[J]. Electronics, 2021, 14(10):1634-1634.
|
[12] |
Wei B Y, Shen X L. Remote sensing scene classification based on improved GhostNet[C]. Wuhan: Proceedings of the International Conference on Computer Science and Communication Technology, 2020.
|
[13] |
肖红, 张瑶瑶, 张福禄. 改进的卷积神经网络及在地层识别中的应用[J]. 计算机技术与发展, 2021, 31(9):167-172.
|
|
Xiao Hong, Zhang Yaoyao, Zhang Fulu. Improved convolutional neural network and its application in stratigraphic identification[J]. Computer Technology and Development, 2021, 31(9):167-172.
|
[14] |
温博阁. 基于深度可分离卷积的多目标追踪神经网络研究[J]. 大连交通大学学报, 2021, 42(5):111-114.
|
|
Wen Boge. Multi-target tracking neural network based on depthwise separable convolutions[J]. Journal of Dalian Jiaotong University, 2021, 42 (5):111-114.
|
[15] |
薛钰洁. 基于多种数据库的改进YOLO算法研究[D]. 大连: 大连理工大学, 2021.
|
|
Xue Yujie. Research on improved YOLO algorithm based on multiple databases[D]. Dalian: Dalian University of Technology, 2021.
|
[16] |
Qing Y H, Liu W Y, Feng L Y, et al. Improved YOLO network for free-angle remote sensing target detection[J]. Remote Sensing, 2021, 11(13):2171-2171.
doi: 10.3390/rs11182171
|
[17] |
张莹, 刘子龙, 万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11):11-20.
|
|
Zhang Ying, Liu Zilong, Wan Wei. UAV vehicle target detection based on Faster R-CNN[J]. Electronic Science and Technology, 2021, 34(11):11-20.
|
[18] |
邵叶秦, 周昆阳, 郑泽斌, 等. 基于改进的轻量级YOLOv3的交通信号灯检测与识别[J]. 南通大学学报(自然科学版), 2021, 20(3):34-40.
|
|
Shao Yeqin, Zhou Kunyang, Zheng Zebin, et al. Traffic light detection and recognition based on improved lightweight YOLOv3[J]. Journal of Nantong University(Natural Science Edition), 2021, 20(3):34-40.
|