[1] |
Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time[J]. The Lancet Infectious Diseases, 2020, 20(5):533-534.
doi: 10.1016/S1473-3099(20)30120-1
|
[2] |
缪冉, 李菲菲, 陈虬. 基于卷积神经网络与多尺度空间编码的场景识别方法[J]. 电子科技, 2020, 33(12):54-58.
|
|
Miao Ran, Li Feifei, Chen Qiu. Scene recognition algorithm based on convolutional neural networks and multi-scale space encoding[J]. Electronic Science and Technology, 2020, 33(12):54-58.
|
[3] |
Ma Y, Feng P, He P, et al. Segmenting lung lesions of COVID-19 from CT images via pyramid pooling improved Unet[J]. Biomedical Physics & Engineering Express, 2021, 7(4):1-12.
|
[4] |
周子棋, 康莉, 黄建军. 多站点新冠肺炎肺部CT图像的三维深度卷积分割[J]. 信号处理, 2021, 35(5):771-779.
|
|
Zhou Ziqi, Kang Li, Huang Jianjun. 3D CNN segmentation of multi-site lung CT COVID-19 lesion[J]. Journal of Signal Processing, 2021, 35(5):771-779.
|
[5] |
宋瑶, 刘俊. 改进U-Net的新冠肺炎图像分割方法[J]. 计算机工程与应用, 2021, 57(19):243-251.
doi: 10.3778/j.issn.1002-8331.2010-0207
|
|
Song Yao, Liu Jun. Improved U-Net network for COVID-19 image segmentation[J]. Computer Engineering and Applications, 2021, 57(19):243-251.
doi: 10.3778/j.issn.1002-8331.2010-0207
|
[6] |
Fan D P, Zhou T, Ji G P, et al. Inf-Net: Automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8):2626-2637.
doi: 10.1109/TMI.2020.2996645
|
[7] |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: Learning where to look for the pancreas[C]. Amsterdam: Proceedings of the Medical Imaging with Deep Learning, 2018.
|
[8] |
Zhao J X, Liu J J, Fan D P, et al. EGNet: Edge guidance network for salient object detection[C]. Seoul: IEEE International Conference on Computer Vision, 2019.
|
[9] |
Wu Z, Su L, Huang Q. Stacked cross refinement network for edge-aware salient object detection[C]. Seoul: IEEE International Conference on Computer Vision, 2019.
|
[10] |
Zhang Z, Fu H, Dai H, et al. ET-Net: A generic edge-attention guidance network for medical image segmentation[C]. Shenzhen: International Conference on Medical Image Computing and Computer Assisted Intervention, 2019.
|
[11] |
Fu H, Cheng J, Xu Y, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Transactions on Medical Imaging, 2018, 37(7):1597-1605.
doi: 10.1109/TMI.2018.2791488
pmid: 29969410
|
[12] |
Gu Z, Cheng J, Fu H, et al. CE-Net: Context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10):2281-2292.
doi: 10.1109/TMI.2019.2903562
pmid: 30843824
|
[13] |
Zhang S, Fu H, Yan Y, et al. Attention guided network for retinal image segmentation[C]. Shenzhen: International Conference on Medical Image Computing and Computer Assisted Intervention, 2019.
|
[14] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]. Munich: International Conference on Medical Image Computing and Computer Assisted Intervention, 2015.
|
[15] |
Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet++: A nested U-Net architecture for medical image segmentation[J]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018, 11045:3-11.
doi: 10.1007/978-3-030-00889-5_1
pmid: 32613207
|
[16] |
Gao S H, Cheng M M, Zhao K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2):652-662.
doi: 10.1109/TPAMI.2019.2938758
|
[17] |
Wu Z, Su L, Huang Q. Cascaded partial decoder for fast and accurate salient object detection[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
|
[18] |
Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation[C]. Long Beach: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
[19] |
Wei Y, Feng J, Liang X, et al. Object region mining with adversarial erasing: A simple classifcation to semantic segmentation approach[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[20] |
Chen S, Tan X, Wang B, et al. Reverse attention-based residual network for salient object detection[J]. IEEE Transactions on Image Processing, 2020, 29(2):3763-3776.
doi: 10.1109/TIP.2020.2965989
|
[21] |
Fan D P, Cheng M M, Liu Y, et al. Structure-measure: A new way to evaluate foreground maps[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017.
|
[22] |
Fan D P, Gong C, Cao Y, et al. Enhanced-alignment measure for binary foreground map evaluation[C]. Stockholm: International Joint Conferences on Artificial Intelligence, 2018.
|
[23] |
Schlemper J, Oktay O, Schaap M, et al. Attention gated networks: Learning to leverage salient regions in medical images[J]. Medical Image Analysis, 2019, 53(6):197-207.
doi: 10.1016/j.media.2019.01.012
|
[24] |
Li X, Chen H, Qi X, et al. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12):2663-2674.
doi: 10.1109/TMI.2018.2845918
pmid: 29994201
|