电子科技 ›› 2023, Vol. 36 ›› Issue (2): 22-28.doi: 10.16180/j.cnki.issn1007-7820.2023.02.004

• • 上一篇    下一篇

基于注意力机制和Inf-Net的新冠肺炎图像分割方法

左斌,李菲菲   

  1. 上海理工大学 上海康复器械工程技术研究中心,上海 200093
  • 收稿日期:2021-08-02 出版日期:2023-02-15 发布日期:2023-01-17
  • 作者简介:左斌(1996-),女,硕士研究生。研究方向:图像处理与模式识别。|李菲菲(1970-),女,博士,教授。研究方向:多媒体信息处理、图像处理与模式识别、信息检索等。
  • 基金资助:
    上海市高校特聘教授(东方学者)岗位计划(ES2015XX)

An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net

ZUO Bin,LI Feifei   

  1. Shanghai Engineering Research Center of Assistive Devices,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2021-08-02 Online:2023-02-15 Published:2023-01-17
  • Supported by:
    Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning(ES2015XX)

摘要:

新型冠状病毒肺炎肆虐全球,严重影响了人类社会的生活和健康。CT影像技术是检测新冠肺炎的重要诊断方式,从CT图像中自动准确分割出新冠肺炎病灶区域,对于诊断、治疗和预后都有重要意义。针对新冠肺炎病灶的自动分割,文中提出基于Inf-Net算法改进的自动分割方法,通过引入通道注意力机制加强特征表示,并运用注意力门模块来更好地融合边缘信息。在COVID-19 CT分割数据集上的实验结果表明,文中所提出新冠肺炎图像分割方法的Dice系数、灵敏度、特异率分别为75.1%、75.4%和95.4%,算法性能也优于部分主流方法。

关键词: 新冠肺炎, 计算机断层扫描影像, 医学图像分割, 语义分割, 注意力机制, Inf-Net网络, 卷积神经网络, 深度学习

Abstract:

COVID-19 pandemic has recently ravaged the world, seriously affecting the life and health of human society. CT imaging technology is an important diagnostic method for detecting COVID-19. Automatic and accurate segmentation of the lesion is of great significance for diagnosis, treatment and prognosis. In view of the segmentation of new coronary pneumonia lesions, an improved automatic segmentation method based on the Inf-Net algorithm is proposed, which introduces the channel attention module to improve feature representation and attention gate model to better fuse edge information. The experimental results on COVID-19 CT segmentation datasets show that the Dice similarity coefficient, sensitivity and specificity of the proposed method are 75.1%, 75.4% and 95.4%, respectively, and the algorithm performance is also better than some mainstream methods.

Key words: COVID-19, computerized tomography image, medical image segmentation, semantic segmentation, attention mechanism, Inf-Net network, convolutional neural network, deep learning

中图分类号: 

  • TP391