电子科技 ›› 2023, Vol. 36 ›› Issue (2): 53-60.doi: 10.16180/j.cnki.issn1007-7820.2023.02.008

• • 上一篇    下一篇

全变差稀疏约束深度非负矩阵分解高光谱遥感影像解混方法

赵文君1,翟晗2,张洪艳1   

  1. 1.武汉大学 测绘遥感信息工程国家重点实验室,湖北 武汉 430079
    2.中国地质大学(武汉) 地理与信息工程学院,湖北 武汉 430074
  • 收稿日期:2021-08-18 出版日期:2023-02-15 发布日期:2023-01-17
  • 作者简介:赵文君(1997-),女,硕士研究生。研究方向:高光谱遥感影像解混。|翟晗(1990-),男,博士,副教授。研究方向:高光谱遥感影像信息提取与应用。|张洪艳(1983-),男,博士,教授,博博士生导师。研究方向:遥感信息处理与应用。
  • 基金资助:
    国家自然科学基金(61871298);国家自然科学基金(42071322)

Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing

ZHAO Wenjun1,ZHAI Han2,ZHANG Hongyan1   

  1. 1. State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing, Wuhan University,Wuhan 430079,China
    2. School of Geography and Information Engineering, China University of Geosciences (Wuhan),Wuhan 430074,China
  • Received:2021-08-18 Online:2023-02-15 Published:2023-01-17
  • Supported by:
    National Natural Science Foundation of China(61871298);National Natural Science Foundation of China(42071322)

摘要:

传统非负矩阵分解方法仅基于单层线性模型,现有的深度非负矩阵分解模型忽略了地物光谱的实际混合物理过程,仅从数学理论考虑深度分解。对此,文中从光谱混合的物理过程出发,综合非负矩阵分解和深度学习,将光谱混合过程进行反向建模,并充分考虑丰度的稀疏性和空间平滑性,构建了用于高光谱遥感影像解混的面向端元矩阵的全变差稀疏约束深度非负矩阵分解模型。通过模拟实验和真实实验,将文中所提方法与5种解混方法进行对比。结果表明,相较于面向丰度的深度非负矩阵分解算法,文中所提方法的平均光谱角距离和均方根误差均有所降低,取得了最佳解混结果。

关键词: 高光谱遥感, 高光谱影像解混, 线性光谱解混, 非负矩阵分解, 深度学习, 深度非负矩阵分解, 稀疏约束, 全变差约束

Abstract:

The traditional nonnegative matrix factorization methods are based on single-layer model. The deep nonnegative matrix factorization methods are based on the mathematical theory, ignoring the actual spectral mixing process of materials. In this regard, this study starts from the physical process of spectral mixing, integrates non-negative matrix decomposition and deep learning, and reversely models the spectral mixing process. In addition, considering the sparsity and spatial smoothness of abundance, a fully-variation sparse constrained deep non-negative matrix factorization model for endmember matrix-oriented unmixing of hyperspectral remote sensing images is established. Through simulation experiments and real experiments, the proposed method is compared with five unmixing methods. The results show that compared with the abundance-oriented deep nonnegative matrix factorization algorithm, the average spectral angular distance and root mean square error of the proposed method are reduced, the best unmixing results are obtained.

Key words: hyperspectral remote sensing, hyperspectral unmixing, linear spectral unmixing, nonnegative matrix factorization, deep learning, deep nonnegative matrix factorization, sparsity constraint, total variation constraint

中图分类号: 

  • TP751