[1] |
Zhai H, Zhang H Y, Zhang L P, et al. Sparsity-based clustering for large hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020(11):1-15.
|
[2] |
童庆禧, 张兵, 郑兰芬. 高光谱遥感:原理、技术与应用[M]. 北京: 高等教育出版社, 2006.
|
|
Tong Qingxi, Zhang Bing, Zheng Lanfen. Hyperspectral remote sensing[M]. Beijing: Higher Education Press, 2006.
|
[3] |
Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1):44-57.
doi: 10.1109/79.974727
|
[4] |
Zhai H, Zhang H, Zhang L, et al. Laplacian-regularized low-rank subspace clustering for hyperspectral image band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(3):1723-1740.
doi: 10.1109/TGRS.2018.2868796
|
[5] |
Zhai H, Zhang H, Pingxiang L I, et al. Hyperspectral image clustering: Current achievements and future lines[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 17(7)1243-1247.
|
[6] |
刘璐, 张洪艳, 张良培. 基于光谱加权低秩矩阵分解的高光谱影像去噪方法[J]. 电子科技, 2020, 33(5):21-27.
|
|
Liu Lu, Zhang Hongyan, Zhang Liangpei. Hyperspectral image denoising via spectral weighted low-rank matrix approximation[J]. Electronic Science and Technology, 2020, 33(5):21-27.
|
[7] |
魏一苇, 黄世奇. 高光谱混合像元分解技术研究综述[C]. 武汉: 第九届国家安全地球物理专题研讨会, 2013.
|
|
Wei Yiwei, Huang Shiqi. Overview of the technique for hyperspectral unmixing[C]. Wuhan: The Ninth National Security Geophysics Symposium, 2013.
|
[8] |
Jia S, Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 47(1):161-173.
doi: 10.1109/TGRS.2008.2002882
|
[9] |
Lu X, Wu H, Yuan Y, et al. Manifold regularized sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 51(5):2815-2826.
doi: 10.1109/TGRS.2012.2213825
|
[10] |
Feng X R, Li H C, Li J, et al. Hyperspectral unmixing using sparsity-constrained deep nonnegative matrix factorization with total variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):6245-6257.
doi: 10.1109/TGRS.2018.2834567
|
[11] |
Tong L, Zhou J, Qian B, et al. Adaptive graph regularized multilayer nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020(13):434-447.
|
[12] |
Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791.
doi: 10.1038/44565
|
[13] |
Qian Y, Jia S, Zhou J, et al. Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4282-4297.
doi: 10.1109/TGRS.2011.2144605
|
[14] |
He W, Zhang H, Zhang L. Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3909-3921.
doi: 10.1109/TGRS.2017.2683719
|
[15] |
Zhai H, Zhang H, Zhang L, et al. Total variation regularized collaborative representation clustering with a locally adaptive dictionary for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1):166-180.
doi: 10.1109/TGRS.2018.2852708
|
[16] |
Zhai H, Zhang H, Zhang L, et al. Nonlocal means regularized sketched reweighted sparse and low-rank subspace clustering for large hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(5):4164-4178.
doi: 10.1109/TGRS.2020.3023418
|
[17] |
Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1-4):259-268.
doi: 10.1016/0167-2789(92)90242-F
|
[18] |
Nascimento J M P, Dias J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):898-910.
doi: 10.1109/TGRS.2005.844293
|
[19] |
Cichocki A, Zdunek R. Multilayer nonnegative matrix factorisation[J]. Electronics Letters, 2006, 42(16):947.
doi: 10.1049/el:20060983
|
[20] |
Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data[J]. California Institute of Technology, 1995(3):1-4.
|
[21] |
Zhu F, Wang Y, Fan B, et al. Spectral unmixing via data-guided sparsity[J]. IEEE Transactions on Image Processing, 2014, 23(12):5412-5427.
pmid: 25330488
|