[1] |
魏潇潇, 王小铭, 李蕾, 等. 1979-2015年中国城市生活垃圾产生和处理时空特征[J]. 中国环境科学, 2018, 38(10):3833-3843.
|
|
Wei Xiaoxiao, Wang Xiaoming, Li Lei, et al. Temporal and spatial characteristics of municipal solid waste generation and treatment in China from 1979 to 2015[J]. China Environmental Science, 2018, 38(10):3833-3843.
|
[2] |
梁建胜, 温贺平. 基于深度学习的视频关键帧提取与视频检索[J]. 控制工程, 2019, 26(5):965-970.
|
|
Liang Jiansheng, Wen Heping. Key frame abstraction and retrieval of videos based on deep learning[J]. Control Engineering of China, 2019, 26(5):965-970.
|
[3] |
赵亚男, 吴黎明, 陈琦. 基于多尺度融合SSD 的小目标检测算法[J]. 计算机工程, 2020, 46(1):247-254.
|
|
Zhao Yanan, Wu Liming, Chen Qi. Small object detection algorithm based on multi-scale fusion SSD[J]. Computer Engineering, 2020, 46(1):247-254.
|
[4] |
Ma Y, Zhang P, Tang Y. Research on fish image classification based on transfer learning and convolutional neural network model[C]. Huangshan: Proceedings of the Fourteenth International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, 2018.
|
[5] |
张亚须, 龙晖, 云利军. 基于改进DPM模型的行人检测方法研究[J]. 大理大学学报, 2018, 3(6):13-18.
|
|
Zhang Yaxu, Long Hui, Yun Lijun. Research on pedestrian detection method based on improved DPM model[J]. Journal of Dali University, 2018, 3(6):13-18.
|
[6] |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.
|
[7] |
闫新庆, 杨喻涵, 陆桂明. 基于改进Faster-RCNN的目标检测算法研究[J]. 中国新通信, 2021, 23(1):46-48.
|
|
Yan Xinqing, Yang Yuhan, Lu Guiming. Research on target detection algorithm based on improved Fast-RCNN[J]. China New Communications, 2021, 23(1):46-48.
|
[8] |
Wang H B, Zhang Z D. Text detection algorithm based on improved YOLOv3[C]. Beijing: Proceedings of IEEE the Ninth International Conference on Electronics Information and Emergency Communication, 2019.
|
[9] |
Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
|
[10] |
Gu S, Ding L. A complex-valued VGG network based deep learing algorithm for image recognition[C]. Wanzhou: Proceedings of the Ninth International Conference on Intelligent Control and Information Processing, 2018.
|
[11] |
钟志权, 袁进, 唐晓颖. 基于卷积神经网络的左右眼识别[J]. 计算机研究与发展, 2018, 55(8):1667-1673.
|
|
Zhong Zhiquan, Yuan Jin, Tang Xiaoying. Left-vs-Right eye discrimination based on convolutional neural network[J]. Journal of Computer Research and Development, 2018, 55(8):1667-1673.
|
[12] |
柯岩, 林小竹, 廖蕊, 等. 卷积神经网络层级分解研究[J]. 计算机工程, 2019, 45(11):191-197.
|
|
Ke Yan, Lin Xiaozhu, Liao Rui, et al. Research on hierarchical decomposition of convolutional neural network[J]. Computer Engineering, 2019, 45(11):191-197.
|
[13] |
Cao Z, Long M, Wang J, et al. HashNet: Deep learning to hash by continuation[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017.
|
[14] |
王一宁, 秦品乐, 李传朋, 等. 基于残差神经网络的图像超分辨率改进算法[J]. 计算机应用, 2018, 38(1):246-254.
doi: 10.11772/j.issn.1001-9081.2017061461
|
|
Wang Yining, Qin Pinle, Li Chuanpeng. Improved algorithm of image super resolution based on residual neural network[J]. Journal of Computer Applications, 2018, 22(1):246-254.
doi: 10.11772/j.issn.1001-9081.2017061461
|
[15] |
汪欣, 吴薇, 曾照. 基于视频的人脸检测算法研究[J]. 电子科技, 2020, 33(2):25-31.
|
|
Wang Xin, Wu Wei, Zeng Zhao. Research on face detection algorithm based on video[J]. Electronic Science and Technology, 2020, 33(2):25-31.
|
[16] |
秦莹华, 李菲菲, 陈虬. 基于迁移学习的多标签图像标注[J]. 电子科技, 2018, 31(8):21-24.
|
|
Qin Yinghua, Li Feifei, Chen Qiu. Multi-label image annotation based on transfer learning[J]. Electronic Science and Technology, 2018, 31(8):21-24.
|
[17] |
Weng Q, Mao Z, Lin J, et al. Land-use classification via extreme learning classifier based on deep convolutional features[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5):704-708.
doi: 10.1109/LGRS.2017.2672643
|
[18] |
Rauf H T, Lali M I U, Zahoor S, et al. Visual features based automated identification of fish species using deep convolutional neural networks[J]. Computers and Electronics in Agriculture, 2019, 16(7):154-167.
|