电子科技 ›› 2022, Vol. 35 ›› Issue (5): 33-37.doi: 10.16180/j.cnki.issn1007-7820.2022.05.006

• • 上一篇    下一篇

基于BP神经网络的小角度井斜方位角误差补偿研究

丁慧慧1,邵婷婷1,2,乔曦1   

  1. 1.延安大学 物理与电子信息学院,陕西 延安 716000
    2.陕西省能源大数据智能处理省市共建重点实验室,陕西 延安 716000
  • 收稿日期:2020-12-18 出版日期:2022-05-25 发布日期:2022-05-27
  • 作者简介:丁慧慧(1996-),女,硕士研究生。研究方向:智能信息处理与控制。|邵婷婷(1982-),女,副教授。研究方向:智能信息处理与控制。
  • 基金资助:
    陕西省能源大数据智能处理省市共建重点实验室开放基金(IPBED19);延安大学2020年研究生教育创新计划(YCX2020050)

Research on Azimuth Error Compensation Based on BP Neural Network at Small-Angle Deviation

DING Huihui1,SHAO Tingting1,2,QIAO Xi1   

  1. 1. School of Physics and Electronic Information,Yan'an University,Yan'an 716000,China
    2. Shaanxi Key Laboratory of Intelligent Processing of Big Energy Data,Yan'an 716000,China
  • Received:2020-12-18 Online:2022-05-25 Published:2022-05-27
  • Supported by:
    Open Fund Project of Key Laboratory Jointly Built by Shaanxi and Cities of Intelligent Processing of Big Energy Data(IPBED19);Graduate Education Innovation Program of Yan'an Universityin 2020(YCX2020050)

摘要:

井斜角与方位角是井眼轨迹计算中的主要测量参数,然而与常规井斜时方位角误差相比,小角度井斜下测斜仪的方位角测量误差更大。为了提高测斜仪在小角度井斜下的方位角测量精度,基于BP神经网络算法对5°~10°小角度井斜下方位角的测量进行了补偿。文中以标准井斜角和实测方位角构成的二维向量作为输入,以标准方位角构成的一维向量作为输出,建立了双入单出网络模型。采用随机选取的方式将学习样本分为训练集与测试集,使网络具有较好的泛化能力。仿真测试结果表明,该BP神经网络误差校正模型运行稳定,补偿精度达到10-6,可将小角度井斜下方位角的测量精度从±5.3°提高至±1.7°以内。

关键词: 测斜仪精度, 小井斜, 方位角校正, 神经网络, BP算法, 误差补偿, 校正模型, 梯度下降

Abstract:

Deviation angle and azimuth angle are the main measurement parameters in borehole trajectory calculation. However, the measurement error of azimuth angle of the inclinometer with small-angle deviation is larger than that with conventional deviation. In order to improve the accuracy of azimuth measurement of inclinometer under small-angle deviation, the measurement of azimuth angle under 5°~10° is compensated based on BP neural network algorithm. The neural network is established, whose input is two dimensional vector including standard deviation angle and measured azimuth, and output is the expected azimuth. The learning samples are divided into training sets and test sets by random selection, which can make the network have better generalization ability. The simulation results show that the BP neural network error correction model runs stably, with a compensation accuracy of 10-6, which can increase the measurement accuracy of the low angle of the small angle well deviation from ±5.3° to within ±1.7°.

Key words: inclinometer accuracy, small-angle deviation, azimuth correction, neural network, BP algorithm, error compensation, correction model, gradient descent

中图分类号: 

  • TN98