[1] |
胡彬, 陈瑞, 徐建勋, 等. 雾霾超细颗粒物的健康效应[J]. 科学通报, 2015,60(30):2808-2823.
|
|
Hu Bin, Chen Rui, Xu Jianxun, et al. Health effects of ambient ultrafine(nano) particles in haze[J]. Chinese Science Bulletin, 2015,60(30):2808-2823.
|
[2] |
权建农, 徐祥德, 贾星灿, 等. 影响我国霾天气的多尺度过程[J]. 科学通报, 2020,65(9):810-824.
|
|
Quan Jiannong, Xu Xiangde, Jia Xingcan, et al. Multi-scale processes in severe haze events in China and their interactions with aerosols: mechanisms and progresses[J]. Chinese Science Bulletin, 2020,65(9):810-824.
|
[3] |
李波, 朱恩文, 冯倩. 基于时间序列的长沙市PM2.5的统计分析[J]. 经济数学, 2017,34(1):105-110.
|
|
Li Bo, Zhu Enwen, Feng Qian. Statistical analysis of changsha PM2.5 based on time series[J]. Journal of Quantitative Economics, 2017,34(1):105-110.
|
[4] |
戴邵武, 陈强强, 刘志豪, 等. 基于EMD-LSTM 的时间序列预测方法[J]. 深圳大学学报(理工版), 2020,37(3):265-270.
|
|
Dai Shaowu, Chen Qiangqiang, Liu Zhihao, et al. Time series prediction based on EMD-LSTM model[J]. Journal of Shenzhen University(Science and Engineering), 2020,37(3):265-270.
|
[5] |
康俊峰, 黄烈星, 张春艳, 等. 多机器学习模型下逐小时PM2.5预测及对比分析[J]. 中国环境科学, 2020,40(5):1895-1905.
|
|
Kang Junfeng, Huang Liexing, ZhangChunyan,et al.Hourly PM2.5 prediction and its comparative analysis under multimachine learning model[J]. China Environmental Science, 2020,40(5):1895-1905.
|
[6] |
蒋奇峰, 杜景林, 周芸. 一种基于QPSO-RBF模型预测PM2.5浓度值的方法研究及应用[J]. 计算机应用与软件, 2020,37(9):202-208.
|
|
Jiang Qifeng, Du Jinglin, Zhou Yun. A method for predicting PM2.5 concentration based on QPSO-RBF model and its application[J]. Computer Applications and Software, 2020,37(9):202-208.
|
[7] |
管胜, 阮方鸣, 周奎, 等. BP神经网络预测电极速度影响放电参数分析[J]. 电子科技, 2019,32(6):43-48.
|
|
Guan Sheng, Ruan Fangming, Zhou Kui, et al. Analysis of discharge parameters affected by BP neural network predicting electrode velocity[J]. Electronic Science and Technology, 2019,32(6):43-48.
|
[8] |
Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,1(1):1-41.
|
[9] |
Liu Y M, Zhao C C, Xiong M Y, et al. Assessment of bearing performance degradation via extension and EEMD combined approach[J]. Journal of Central South University, 2017,24(5):1155-1163.
|
[10] |
Xu P P, Chen C J, Lou H F. Research on the method of EEMD in pulse wave signals prcessing[J]. Chinese Journal of Biomedical Engineering, 2018,27(3):100-108.
|
[11] |
Xiao Y, Tian X T. Tourism traffic demand prediction using Google trends based on EEMD-DBN[J]. Engineering, 2020,12(3):194-215.
|
[12] |
曲悦, 钱旭, 宋洪庆, 等. 基于机器学习的北京市PM2.5浓度预测模型及模拟分析[J]. 工程科学学报, 2019,41(3):401-407.
|
|
Qu Yue, Qian Xu, Song Hongqing, et al. Machine-learning- based model and simulation analysis of PM2.5concentration prediction in Beijing[J]. Chinese Journal of Engineering, 2019,41(3):401-407.
|
[13] |
尹光花, 刘小明, 张露, 等. 基于LSTM特征模板的短文本情感要素分析与研究[J]. 电子科技, 2018,31(11):38-41.
|
|
Yin Guanghua, Liu Xiaoming, Zhang Lu, et al. Sentiment elements of internet short texts for analysis and research based on LSTM network mode[J]. Electronic Science and Technology, 2018,31(11):38-41.
|
[14] |
Zhang B N. Foreign exchange rates forecasting with an EMD-LSTM neural networks model[J]. Journal of Physics Conference, 2018,1053(1):5-12.
|
[15] |
陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020,44(2):614-620.
|
|
Chen Zhenyu, Liu Jinbo, Li Chen, et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020,44(2):614-620.
|
[16] |
董健卫, 陈艳美, 孟盼, 等. 回归分析与基于MIV的RBF神经网络在PM2.5的相关因素分析中的应用[J]. 数学的实践与认识, 2017,47(10):127-136.
|
|
Dong Jianwei, Chen Yanmei, Meng Pan, et al. The application of regression analysis and RBF neural network based on MIV in the related factors analysis of PM2.5[J]. Mathematics in Practice and Theory, 2017,47(10):127-136.
|
[17] |
陈川, 陈冬林, 何李凯, 等. 基于BPNN-EMD-LSTM 组合模型的城市短期燃气负荷预测[J]. 安全与环境工程, 2019,26(1):149-154.
|
|
Chen Chuan, Chen Donglin, He Likai, et al. Short-term forecast of urban natural gas load based on BPNN-EMD-LSTM combined model[J]. Safety and Environmental Engineering, 2019,26(1):149-154.
|
[18] |
曾浩, 丁镭. 长江经济带城市雾霾污染PM2.5时空格局演变及影响因素研究[J]. 华中师范大学学报(自然科学版), 2019,53(5):724-734.
|
|
Zeng Hao, Ding Lei. Study on spatial-temporal pattern evolution and influencing factors of urban haze pollution PM2.5 in the Yangtze river economic belt[J]. Journal of Central China Normal University(Natural Sciences), 2019,53(5):724-734.
|
[19] |
石昊苏, 方丽娟, 台志强, 等. 一种基于Retinex的雾霾图像增强改进算法[J]. 电子设计工程, 2018,26(4):180-183.
|
|
Shi Haosu, Fang Lijuan, Tai Zhiqiang, et al. An improved haze image enhancement algorithm based on Retinex[J]. Electronic Design Engineering, 2018,26(4):180-183.
|