电子科技 ›› 2022, Vol. 35 ›› Issue (6): 35-42.doi: 10.16180/j.cnki.issn1007-7820.2022.06.006

• • 上一篇    下一篇

GA-BP神经网络对片烟结构的预测研究

张崇崇,黄亚宇   

  1. 昆明理工大学 机电工程学院,云南 昆明 650500
  • 收稿日期:2020-12-09 出版日期:2022-06-15 发布日期:2022-06-20
  • 作者简介:张崇崇(1994-),男,硕士研究生。研究方向:数字化设计与制造。|黄亚宇(1962-),男,教授。研究方向:数字化设计与制造。
  • 基金资助:
    云南省重大科技专项计划(202002AD080001)

A GA-BP Neural Network for Predicting the Structure of Leaf Tobacco

ZHANG Chongchong,HUANG Yayu   

  1. Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China
  • Received:2020-12-09 Online:2022-06-15 Published:2022-06-20
  • Supported by:
    Yunnan Provincial Major Science and Technology Special Plan(202002AD080001)

摘要:

针对烟叶复烤厂打叶过程中片烟结构难以预测的问题,文中提出了一种基于MATLAB图像处理的GA-BP神经网络预测模型。对于烟叶分类问题,基于获取的烟叶图片,利用MATLAB软件对图片做预处理,提取衡量片烟结构的主要特征变量,并利用行业标准与聚类分析算法对数据进行分类。通过统计学的标准数学方法,构建了遗传算法优化的BP神经网络预测模型对主要影响参数进行预测优化。研究结果表明,文中所提方法预测精度较高,预测极差均小于0.059,可有效解决打叶过程中片烟的预测问题。

关键词: MATLAB, 图像处理, 聚类分析, 留一交叉验证, BP神经网络, 遗传算法, GA-BP神经网络, 二值化

Abstract:

In view of the problem that it is difficult to predict the structure of tobacco during the threshing process of redrying plant, a GA-BP neural network prediction model based on MATLAB image processing is proposed. For the classification of tobacco leaf, the obtained tobacco leaf images are preprocessed using of the MATLAB software. Then, the main characteristic variables that measure the structure of the tobacco are extracted, and industry standards and cluster analysis algorithms are used to classify the data. Through the standard mathematical method of statistics, the BP neural network prediction model optimized by genetic algorithm is constructed to predict and optimize the main influencing parameters. The research results show that the method proposed in this study has high prediction accuracy, and the prediction range is less than 0.059, which indicates that the method can effectively solve the problem of prediction of slices of tobacco in the process of threshing.

Key words: MATLAB, image processing, cluster analysis, leave-one-out-cross-validation, BP neural network, genetic algorithm, GA-BP neural network, binarization

中图分类号: 

  • TP29