电子科技 ›› 2022, Vol. 35 ›› Issue (6): 21-27.doi: 10.16180/j.cnki.issn1007-7820.2022.06.004

• • 上一篇    下一篇

基于卡尔曼滤波的无线传感网时空数据融合算法

杜鹏,包晓安,胡逸飞,陈迪荣   

  1. 浙江理工大学 信息学院,浙江 杭州 310018
  • 收稿日期:2021-01-21 出版日期:2022-06-15 发布日期:2022-06-20
  • 作者简介:杜鹏(1995-),男,硕士研究生。研究方向:嵌入式与物联网技术。|包晓安(1973-),男,教授。研究方向:人工智能、计算机视觉、智能信息处理及物联网技术等。
  • 基金资助:
    国家自然科学基金(6207050141);浙江省重点研发计划(2020C03094);浙江省自然科学基金青年基金(LQ20F050010)

Research on Spatio-Temporal Data Fusion Algorithm of Wireless Sensor Network Based on Kalman Filter

DU Peng,BAO Xiaoan,HU Yifei,CHEN Dirong   

  1. School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China
  • Received:2021-01-21 Online:2022-06-15 Published:2022-06-20
  • Supported by:
    National Natural Science Foundation of China(6207050141);Key R&D Program of Zhejiang(2020C03094);Natural Science Foundation of Zhejiang(LQ20F050010)

摘要:

无线传感网络节点采集的信息具有较大的相似性,数据结果存在误差。针对该问题,文中提出了一种基于卡尔曼滤波的无线传感网数据融合算法,通过过滤无效数据和缩紧数据包,提高上传数据的有效性和精度。该算法采用实时性较高的卡尔曼滤波算法对无线传感网络中的数据根据时间序列进行数据融合。在时间数据融合的基础上,根据空间分布特点,进一步对多传感器在网关层依据权重进行数据融合。针对不同位置误差实时变化的特点,网关层以空间数据为基础,使用自适应加权算法动态调整各节点权重。仿真实验表明,该算法易于实现,可有效去除冗余信息,提高数据准确度和可靠性。相较于改进的分批估计与自适应加权方法,采用该方法后均方根误差减少约7.9%,精度提高了2.1%。

关键词: 数据融合, 无线传感网, 卡尔曼滤波, 自适应加权, 时间序列, 空间序列, 物联网, 一致性检验

Abstract:

In order to solve the problem that the information collected from wireless sensor network nodes has a great similarity and some errors exist in the data results, this study proposes a data fusion algorithm based on Kalman filter for wireless sensor network, which improves the efficacy and accuracy of uploaded data by filtering invalid data and shrunk data packets. The algorithm uses the Kalman filter algorithm with high real-time performance to integrate the data in the wireless sensor network according to the time series. On the basis of time data fusion, according to the characteristics of spatial distribution, the data fusion of multi-sensor at the gateway layer is further carried out according to the weight. In view of the characteristics of real-time changes of different position errors, the gateway layer uses spatial data as the basis to dynamically adjust the weight of each node using an adaptive weighting algorithm. Simulation experiments show that the algorithm is easy to implement, can effectively remove redundant information, and improve data accuracy and reliability. Compared with the improved batch estimation and adaptive weighting method, the root mean square error is reduced by about 7.9% and the accuracy is improved by 2.1% after using this method.

Key words: data fusion, wireless sensor network, Kalman filter, adaptive weighting, time series, spatial series, internet of things, consistency test

中图分类号: 

  • TP274