电子科技 ›› 2022, Vol. 35 ›› Issue (5): 19-25.doi: 10.16180/j.cnki.issn1007-7820.2022.05.004

• • 上一篇    下一篇

基于分批估计的自适应加权数据融合算法

施震华1,张娜1,包晓安1,宋杰2   

  1. 1.浙江理工大学 信息学院,浙江 杭州 310018
    2.武汉理工大学 经济学院,湖北 武汉 430070
  • 收稿日期:2020-12-22 出版日期:2022-05-25 发布日期:2022-05-27
  • 作者简介:施震华(1995-),男,硕士研究生。研究方向:嵌入式与物联网技术。|张娜(1977-),女,副教授。研究方向:软件工程、软件测试。|包晓安(1973-),男,教授。研究方向:自适应软件、软件测试与智能信息处理。
  • 基金资助:
    国家自然科学基金(6207050141);浙江省自然科学基金青年基金(LQ20F050010);浙江省重点研发计划(2020C03094)

Adaptive Weighted Data Fusion Algorithm Based on Batch Estimation

SHI Zhenhua1,ZHANG Na1,BAO Xiaoan1,SONG Jie2   

  1. 1. School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China
    2. School of Economics,Wuhan University of Technology,Wuhan 430070,China
  • Received:2020-12-22 Online:2022-05-25 Published:2022-05-27
  • Supported by:
    National Natural Science Foundation of China(6207050141);Natural Science Foundation of Zhejiang(LQ20F050010);Research and Development Program of Zhejiang(2020C03094)

摘要:

针对多传感器数据融合问题,文中提出了一种基于分批估计的自适应加权数据融合算法。该算法采用时间序列和空间序列对采集的数据分批求其方差,利用数据一致性检测对噪点进行剔除,进而得到自适应因子。随后采用自适应加权法对数据进行融合,得到预测值。文中模拟物联网数据进行仿真实验。结果表明,在处理数据时运用分批估计的自适应加权多传感器数据融合技术,能够提高传感器测量的精确度和系统的可靠性,基于分批估计的自适应加权平均法比传统自适应方法的均方根误差减少了10%,精度提高了2.3%。

关键词: 自适应加权, 多传感器融合, 分批估计, 数据融合, 物联网, 数值一致性检测, 时间序列, 空间序列

Abstract:

In this study, an adaptive weighted data fusion algorithm based on batch estimation is proposed for multi-sensor data fusion. The algorithm uses time series and spatial sequences to find the variance of the collected data in batches, and uses data consistency detection to eliminate noise, and then obtains the adaptive factors. Subsequently, the adaptive weighting method is used to fuse the data to obtain the predicted value. The simulation experiments with IoT data show that the adaptive weighted multi-sensor data fusion technology of batch estimation can improve the accuracy of sensor measurement and the reliability of the system when processing data, and the adaptive weighted average method based on batch estimation is 10% less than the root mean square error of traditional adaptive method and the accuracy is improved by 2.3%.

Key words: adaptive weighting, multi-sensor fusion, patch estimation, data fusion, internet of things, numerical consistency detection, time series, spatial sequence

中图分类号: 

  • TP391