[1] |
Sarieddeen H, Saeed N, Al-Naffouri T Y, et al. Next generation terahertz communications: a rendezvous of sensing, imaging, and localization[J]. IEEE Communications Magazine, 2020, 58(5):69-75.
|
[2] |
Feng H, An D, Tu H, et al. A passive video-rate terahertz human body imager with real-time calibration for security applications[J]. Applied Physics B, 2020, 126(8):97-105.
doi: 10.1007/s00340-020-07448-x
|
[3] |
Vaks V L, Anfertev V A, Balakirev V Y, et al. High resolution terahertz spectroscopy for analytical applications[J]. Physics-Uspekhi, 2020, 63(7):708-720.
doi: 10.3367/UFNe.2019.07.038613
|
[4] |
Wang C, Qin J, Xu W, et al. Terahertz imaging applications in agriculture and food engineering: A review[J]. Transactions of the ASABE, 2018, 61(2):411-424.
doi: 10.13031/trans.12201
|
[5] |
Hangyo M. Development and future prospects of terahertz technology[J]. Japanese Journal of Applied Physics, 2015, 54(12):1-16.
|
[6] |
Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792.
pmid: 15297655
|
[7] |
Banerjee B, Nagy P B. An introduction to metamaterials and waves in composites[J]. Materials Today, 2011, 14(9):1665-1666.
|
[8] |
Imani M F, Gollub J N, Yurduseven O, et al. Review of metasurface antennas for computational microwave imaging[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3):1860-1875.
doi: 10.1109/TAP.2020.2968795
|
[9] |
Kim Y, Kim D, Lee S H, et al. Single-layer metamaterial bolometer for sensitive detection of low-power terahertz waves at room temperature[J]. Optics Express, 2020, 28(12):17143-17152.
doi: 10.1364/OE.387783
|
[10] |
Ou H, Lu F, Xu Z, et al. Terahertz metamaterial with multiple resonances for biosensing application[J]. Nanomaterials, 2020, 10(6):1038-1049.
doi: 10.3390/nano10061038
|
[11] |
Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):74021-74024.
|
[12] |
Hu F, Qian Y, Li Z, et al. Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array[J]. Journal of Optics, 2013, 15(5):5101-5107.
|
[13] |
王连胜, 夏冬艳, 付全红, 等. 基于电流变液的宽带可调超材料吸波体设计[J]. 电子科技, 2020, 33(12):32-37.
|
|
Wang Liansheng, Xia Dongyan, Fu Quanhong, et al. The design of wideband tunable metamaterial absorber based on electrorheological fluid[J]. Electronic Science and Technology, 2020, 33(12):32-37.
|
[14] |
Zhao X, Wang Y, Schalch J, et al. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers[J]. ACS Photonics, 2019, 6(4):830-837.
doi: 10.1021/acsphotonics.8b01644
|
[15] |
王磊, 肖芮文, 葛士军, 等. 太赫兹液晶材料与器件研究进展[J]. 物理学报, 2019, 68(8):7-20.
|
|
Wang Lei, Xiao Ruiwen, Ge Shijun, et al. Research progress of terahertz liquid crystal materials and devices[J]. Acta Physica Sinica, 2019, 68(8):7-20.
|
[16] |
Wang J, Tian H, Wang Y, et al. Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial[J]. Optics Express, 2018, 26(5):5769-5776.
doi: 10.1364/OE.26.005769
|
[17] |
Isiĉ G, Vasiĉ B, Zografopoulos C, et al. Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals[J]. Physical Review Applied, 2015, 3(6):40071-40078.
|
[18] |
Costa F, Monorchio A, Manara G. Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model[J]. IEEE Antennas and Propagation Magazine, 2012, 54(4):35-48.
|
[19] |
聂猛猛, 刘岩. 基于电磁超材料无线电能传输系统设计与优化[J]. 电子设计工程, 2022, 30(2):133-137.
|
|
Nie Mengmeng, Liu Yan. Design and optimization of radio power transmission system based on lectromagneticmetamaterials[J]. Electronic Design Engineering, 2022, 30(2):133-137.
|