电子科技 ›› 2022, Vol. 35 ›› Issue (10): 51-58.doi: 10.16180/j.cnki.issn1007-7820.2022.10.009

• • 上一篇    下一篇

几何约束下噪声一致性的图像拼接篡改检测

路东生,张玉金,朱海,姜月武   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2021-04-11 出版日期:2022-10-15 发布日期:2022-10-25
  • 作者简介:路东生(1996-),男,硕士研究生。研究方向:图像篡改取证、机器学习、计算机视觉。|张玉金(1982-),男,博士,副教授。研究方向:多媒体内容安全、图像处理与模式识别。
  • 基金资助:
    国家自然科学基金(61902237);上海市科委重点项目(18511101600);上海市自然科学基金项目(17ZR1411900);上海市科委青年科技英才“扬帆计划”项目(19YF1418200)

Image-Splicing Forgery Detection Based on Noise Consistency Under Geometric Constraints

LU Dongsheng,ZHANG Yujin,ZHU Hai,JIANG Yuewu   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science, Shanghai 201620,China
  • Received:2021-04-11 Online:2022-10-15 Published:2022-10-25
  • Supported by:
    National Natural Science Foundation of China(61902237);Key Projects of Shanghai Science and Technology Commission(18511101600);Natural Science Foundation of Shanghai(17ZR1411900);Shanghai Science and Technology Commission Young Science and Technology Talents "Sailing Plan" Project(19YF1418200)

摘要:

将以图像块为单位的噪声水平估计方法应用在图像篡改定位时,会导致分割边缘呈锯齿状并降低边缘定位准确率。针对该问题,文中提出了一种基于几何约束和噪声一致性分析的图像拼接取证算法。采用基于统计的噪声水平估计与K-means算法对每个图像块实现初步检测定位,提取初步拼接区域边缘的点集合,并以其每个点为中心,依次在边缘图上进行方形范围搜索,拼接区域边缘。随后,利用几何约束筛选算法选择疑似篡改边缘点来定位篡改区域。相较于现有算法,在Columbia上正确检测率相同的情况下,采用文中方法可将错误检测率降低12.7%,并降低算法复杂度。

关键词: 拼接检测, 几何约束, 噪声估计, 图像取证, 边缘检测, 区域定位, K-means, 主成分分析法

Abstract:

When the noise level estimation method based on image block is applied to splicing image localization, it will cause the segmentation edge to be jagged and reduce the accuracy of edge positioning. In view of the problem, this study proposes an image splicing detection algorithm based on geometric constraints and noise consistency analysis. Statistical-based noise level estimation and K-means algorithm are used to achieve preliminary detection and positioning for each image block. The point set at the edge of the initial splicing area is extracted, and each point is used as the center to search for the square range on the edge map in turn to splice the edge of the area. Subsequently, the geometric constraint filtering algorithm is used to select the suspected tampering edge points to locate the tampering area. Compared with the existing algorithm, when the correct detection rate is the same on Columbia, the proposed method can reduce the error detection rate by 12.7% and reduce the complexity of the algorithm.

Key words: splicing detection, geometric constraints, noise estimation, image forensics, edge detection, regional location, K-means, principal component analysis

中图分类号: 

  • TP391.4