[1] |
武健, 张大兴, 刘志发. 基于WLD特征的图像复制粘贴篡改检测算法[J]. 电子科技, 2017, 30(7):47-50.
|
|
Wu Jian, Zhang Daxing, Liu Zhifa. An image copy and paste feature tamper detection algorithm based on WLD features[J]. Electronic Science and Technology, 2017, 30(7):47-50.
|
[2] |
王晨璐, 朱婷鸽. 基于伪造痕迹的数字图像盲检测综述[J]. 电子科技, 2015, 28(4):186-188.
|
|
Wang Chenlu, Zhu Tingge. A survey of digital image blind detection based on tampering trace[J]. Electronic Science and Technology, 2015, 28(4):186-188.
|
[3] |
Huang H Y, Ciou A J. Copy-move forgery detection for image forensics using the superpixel segmentation and the Helmert transformation[J]. EURASIP Journal on Image and Video Processing, 2019(1):1-16.
|
[4] |
Chen C C, Lu W Y, Chou C H. Rotational copy-move forgery detection using SIFT and region growing strategies[J]. Multimedia Tools and Applications, 2019, 78(13):18293-18308.
doi: 10.1007/s11042-019-7165-8
|
[5] |
熊士婷, 张玉金, 刘婷婷, 等. 基于最优颜色通道的图像拼接检测[J]. 电子科技, 2020, 33(12):49-53.
|
|
Xiong Shiting, Zhang Yujin, Liu Tingting, et al. Image splicing detection based on optimal color channel[J]. Electronic Science and Technology, 2020, 33(12):49-53.
|
[6] |
Moghaddasi Z, Jalab H A, Noor R M. Image splicing forgery detection based on low-dimensional singular value decompo-sition of discrete cosine transform coefficients[J]. Neural Computing and Applications, 2019, 31(11):7867-7877.
doi: 10.1007/s00521-018-3586-y
|
[7] |
Kanwal N, Girdhar A, Kaur L, et al. Detection of digital image forgery using fast fourier transform and local fea-tures[C]. Phuket: Proceedings of the International Conference on Automation, Computational and Technology Management, 2019.
|
[8] |
Vega E A A, Fernández E G, Orozco A L S, et al. Passive image forgery detection based on the demosaicing algorithm and jpeg compression[J]. IEEE Access, 2020(8):11815-11823.
|
[9] |
Wu X, Shao Z, Ou P, et al. Application of quantisation-based deep-learning model compression in JPEG image steganaly-sis[J]. The Journal of Engineering, 2018(16):1402-1406.
|
[10] |
Li H, Luo W, Qiu X, et al. Image forgery localization via integrating tampering possibility maps[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(5):1240-1252.
doi: 10.1109/TIFS.2017.2656823
|
[11] |
Shen X, Shi Z, Chen H. Splicing image forgery detection using textural features based on the grey level co-occurrence matrices[J]. IET Image Processing, 2017, 11(1):44-53.
doi: 10.1049/iet-ipr.2016.0238
|
[12] |
Chen M, Fridrich J, Goljan M, et al. Determining image origin and integrity using sensor noise[J]. IEEE Transactions on Information Forensics and Security, 2008, 3(1):74-90.
doi: 10.1109/TIFS.2007.916285
|
[13] |
Lukáŝ J, Fridrich J, Goljan M. Detecting digital image forgeries using sensor pattern noise[C]. San Jose: Proceedings of the Security, Steganography and Watermarking of Multimedia Contents VIII, 2006.
|
[14] |
Popescu A C, Farid H. Statistical tools for digital forensics[C]. Berlin: Proceedings of the International Workshop on Information Hiding, 2004.
|
[15] |
Lyu S, Pan X, Zhang X. Exposing region splicing forgeries with blind local noise estimation[J]. International Journal of Computer Vision, 2014, 110(2):202-221.
doi: 10.1007/s11263-013-0688-y
|
[16] |
Mahdian B, Saic S. Using noise inconsistencies for blind image forensics[J]. Image and Vision Computing, 2009, 27(10):1497-1503.
doi: 10.1016/j.imavis.2009.02.001
|
[17] |
Pan X, Zhang X, Lyu S. Exposing image splicing with in-consistent local noise variances[C]. Seattle: Proceedings of IEEE International Conference on Computational Photography, 2012.
|
[18] |
Pyatykh S, Hesser J, Zheng L. Image noise level estimation by principal component analysis[J]. IEEE Transactions on Image Processing, 2012, 22(2):687-699.
doi: 10.1109/TIP.2012.2221728
|
[19] |
Zeng H, Zhan Y, Kang X, et al. Image splicing localization using PCA-based noise level estimation[J]. Multimedia Tools and Applications, 2017, 76(4):4783-4799.
doi: 10.1007/s11042-016-3712-8
|
[20] |
熊士婷, 张玉金, 吴飞, 等. 基于统计噪声水平分析的图像拼接检测[J]. 光电子·激光, 2020, 31(2):214-221.
|
|
Xiong Shiting, Zhang Yujin, Wu Fei, et al. Image splicing detection based on statistical noise level analysis[J]. Journal of Optoelectronics·Laser, 2020, 31(2):214-221.
|
[21] |
Yao H, Wang S, Zhang X, et al. Detecting image splicing based on noise level inconsistency[J]. Multimedia Tools and Applications, 2017, 76(10):12457-12479.
doi: 10.1007/s11042-016-3660-3
|
[22] |
Chen G, Zhu F, Ann Heng P. An efficient statistical method for image noise level estimation[C]. Santiago: Proceedings of the IEEE International Conference on Computer Vision, 2015.
|
[23] |
Obaidat M. Creating a complete model of the wooden pattern from laser scanner point clouds using alpha shapes[J]. Jordan Journal of Civil Engineering, 2019, 13(2):269-279.
|
[24] |
Hsu Y F, Chang S F. Detecting image splicing using geome-try invariants and camera characteristics consistency[C]. Shenzhen: Proceedings of the IEEE International Conference on Multimedia and Expositions, 2006.
|