[1] |
周琳娜. 数字图像盲取证技术研究[M]. 北京: 北京邮电大学出版社, 2007.
|
|
Zhou Linna. Research on blind forensics technology of digital image[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2007.
|
[2] |
Fridrich A J, Soukal B D, Luká A J. Detection of copy-move forgery in digital images[C]. Cleveland: Proceedings of the Digital Forensic Research Workshop, 2003.
|
[3] |
Zhao J, Guo J. Passive forensics for copy-move image forgery using a method based on DCT and SVD[J]. Forensic Science International, 2013, 233(1-3):158-166.
doi: 10.1016/j.forsciint.2013.09.013
pmid: 24314516
|
[4] |
Wang X, Liu Y, Xu H, et al. Robust copy-move forgery detection using quaternion exponent moments[J]. Pattern Analysis and Applications, 2018, 21(2):451-467.
doi: 10.1007/s10044-016-0588-1
|
[5] |
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
[6] |
Li K, Li H, Yang B, et al. Detection of image forgery based on improved PCA-SIFT[J]. Lecture Notes in Electrical Engineering, 2014, 277(1):679-686.
|
[7] |
Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359.
doi: 10.1016/j.cviu.2007.09.014
|
[8] |
Xu B, Wang J W, Liu G J, et al. Image copy-move forgery detection based on SURF[C]. Nanjing: Proceedings of the International Conference on Multimedia Information Networking and Security, 2010.
|
[9] |
Rao Y, Ni J. A deep learning approach to detection of splicing and copy-move forgeries in images[C]. Abu Dhabi: Proceedings of the IEEE International Workshop on Information Forensics and Security, 2016.
|
[10] |
Ouyang J, Liu Y, Liao M. Copy-move forgery detection based on deep learning[C]. Shanghai: Proceedings of the Tenth International Congress on Image and Signal Processing, BioMedical Engineering and Informatics,IEEE, 2017.
|
[11] |
Liu Y, Guan Q, Zhao X. Copy-move forgery detection based on convolutional kernel network[J]. Multimedia Tools and Applications, 2018, 77(14):18269-18293.
doi: 10.1007/s11042-017-5374-6
|
[12] |
Wu Y, Abd-Almageed W, Natarajan P. Image copy-move forgery detection via an end-to-end deep neural network[C]. Lake Tahoe: Proceedings of the IEEE Winter Conference on Applications of Computer Vision,IEEE, 2018.
|
[13] |
Zhong J L, Pun C M. An end-to-end dense-inceptionNet for image copy-move forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2019(15):2134-2146.
|
[14] |
Wu Y, Abd-Almageed W, Natarajan P. BusterNet: Detecting copy-move image forgery with source/target localization[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018.
|
[15] |
李应灿, 杨建权, 丁峰, 等. 区分来源和目标区域的图像 Copy-move伪造检测方法[J]. 信号处理, 2020, 36(9):1533-1543.
|
|
Li Yingcan, Yang Jianquan, Ding Feng, et al. Copy-move detection method for distinguishing between source and target regions[J]. Journal of Signal Processing, 2020, 36(9):1533-1543.
|
[16] |
Dong J, Wang W, Tan T. Casia image tampering detection evaluation database[C]. Beijing: Proceedings of the IEEE China Summit and International Conference on Signal and Information Processing,IEEE, 2013.
|
[17] |
Tralic D, Zupancic I, Grgic S, et al. CoMoFoD-new database for copy-move forgery detection[C]. Zadar: Proceedings of the ELMAR,IEEE, 2013.
|
[18] |
Zagoruyko S, Komodakis N. Learning to compare image patches via convolutional neural networks[C]. Boston: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
[19] |
许凤翔. 一种改进相似度的协同过滤算法实现[J]. 电子科技, 2020, 33(2):54-59.
|
|
Xu Fengxiang. Implementation of a collaborative filtering algorithm based on improved similarity[J]. Electronic Science and Technology, 2020, 33(2):54-59.
|
[20] |
Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|
[21] |
郑萌. 基于改进注意力机制模型的智能英语翻译方法研究[J]. 电子科技, 2020, 33(11):84-87.
|
|
Zheng Meng. Research on intelligent English translation method based on improved attention mechanism model[J]. Electronic Science and Technology, 2020, 33(11):84-87.
|