电子科技 ›› 2019, Vol. 32 ›› Issue (5): 49-54.doi: 10.16180/j.cnki.issn1007-7820.2019.05.010

• • 上一篇    下一篇

基于WiFi-GM指纹的室内定位算法

章裕润,吴飞,毛万葵   

  1. 上海工程技术大学 电子电气工程学院,上海 201600
  • 收稿日期:2018-05-17 出版日期:2019-05-15 发布日期:2019-05-06
  • 作者简介:章裕润(1992-),男,硕士研究生。研究方向:室内定位。
  • 基金资助:
    国家自然科学基金(61272097);上海市科技委员会重点项目(18511101600)

Indoor Location Algorithm Based on WiFi-geomagnetism

ZHANG Yurun,WU Fei,MAO Wankui   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201600,China
  • Received:2018-05-17 Online:2019-05-15 Published:2019-05-06
  • Supported by:
    National Natural Science Foundation of China(61272097);Shanghai Municipal Science and Technology Commission Key Project(18511101600)

摘要:

针对室内环境中单一指纹定位方法存在定位误差较大、定位漂移的问题,提出了一种融合室内Wi-Fi指纹和地磁指纹的定位算法。首先在大范围区域中通过K-means聚类方法将较大的匹配区域划分成更小的且特征更加明显集中的子区域,然后在在线阶段通过WiFi指纹粗定位到小区域,再通过地磁指纹定位系统进行近一步精匹配定位。实验表明,该融合算法缩小了地磁匹配的初始搜索范围,大大减少了指纹定位中的误匹配问题。实验中,平均定位误差仅2.17 m,最大定位误差3.61 m,较单一指纹定位系统性能均有大幅度提升,证明该定位方法具有一定的可行性与先进性。

关键词: 室内定位, WiFi, 地磁场, 指纹, K-means聚类, 磁匹配

Abstract:

For the problem that the single fingerprint location results were large errors and drifting in indoor environment, an improved algorithm of geomagnetic and WiFi fingerprint system was proposed. First, the larger matching area was divided into smaller sub-regions with more distinctive features by K-means clustering method. In the online phase, Wi-Fi fingerprints were used to coarsely locate small areas, and then a further fine-match positioning was performed through the geomagnetic fingerprint positioning system. Experimental results showed that the integration of algorithm reduced the searching area, and greatly reduced the problem of mis-matching. In the experiment, the average positioning error was only 2.17 m, and the maximum positioning error was 3.61 m. Compared with the single fingerprint positioning system, the performance was greatly improved, which proved that the positioning method had certain feasibility and advancement.

Key words: indoor location, WiFi, geomagnetic field, fingerprint, K-means clustering, magnetic matching

中图分类号: 

  • TN92