电子科技 ›› 2022, Vol. 35 ›› Issue (11): 58-63.doi: 10.16180/j.cnki.issn1007-7820.2022.11.009

• • 上一篇    下一篇

基于机器学习的服务组合技术研究进展

张晔1,鲍亮2   

  1. 1.中国电子科技集团公司第三十研究所,四川 成都 610041
    2.西安电子科技大学 计算机科学与技术学院,陕西 西安 710071
  • 收稿日期:2021-04-16 出版日期:2022-11-15 发布日期:2022-11-11
  • 作者简介:张晔(1983-),女,工程师。研究方向:网络信息安全、系统设计。|鲍亮(1981-),男,博士,副教授。研究方向:云计算技术、大数据分析、机器学习等。
  • 基金资助:
    国家重点研发计划(2018YFC0831200);陕西省自然科学基金(2019JM-368)

Research Progress of Service Composition Based on Machine Learning

ZHANG Ye1,BAO Liang2   

  1. 1. The 30th Research Institute of China Electronic Technology Group Corporation,Chengdu 610041,China
    2. School of Computer Science and Technology,Xidian University,Xi'an 710071,China
  • Received:2021-04-16 Online:2022-11-15 Published:2022-11-11
  • Supported by:
    National Key R&D Program of China(2018YFC0831200);Natural Science Foundation of Shannxi(2019JM-368)

摘要:

服务组合是服务计算领域内的经典研究问题,在工业及学术领域内受到广泛关注。随着云原生和微服务技术不断普及,服务组合领域涌现出一系列富有创新性的研究。随着计算机技术和人工智能的快速发展,深度学习、强化学习等机器学习算法被越来越多地应用于传统服务组合问题中。文中介绍了服务组合问题常见的分类及面临的挑战,并对近年来涌现的机器学习算法在服务组合问题中的应用进行了归纳介绍。此外,文中还总结了基于机器学习算法解决服务组合问题时所面临的问题,并对今后的发展方向进行了展望。

关键词: 机器学习, 深度学习, 强化学习, 人工智能, 服务组合, 组合优化, 服务计算, 服务质量

Abstract:

Service composition is a classic research problem in the field of service computing, which has received extensive attention in both industrial and academic fields. With the increasing popularity of cloud-native and micro-service technologies, a series of innovative researches have emerged in the field of service composition. With the rapid development of computer technology and artificial intelligence, machine learning algorithms such as deep learning and reinforcement learning are increasingly applied to traditional service composition problems. This study introduces the common classification and challenges of service composition problems, and summarizes the application of machine learning algorithms emerging in service composition problems in recent years. Additionally, the proposed study also summarizes the problems faced in the direction of solving service composition problems based on machine learning algorithms, and looks forward to the future development direction.

Key words: machine learning, deep learning, reinforcement learning, artificial intelligence, service composition, portfolio optimization, services computing, quality of service

中图分类号: 

  • TP389.1