[1] |
Wang H, Hu X, Yu Q, et al. Integrating reinforcement learning and skyline computing for adaptive service composition[J]. Information Sciences, 2020, 51(9):141-160.
|
[2] |
Khakhkhar S, Kumar V, Chaudhary S. Dynamic service composition[J]. International Journal of Computer Science & Artificial Intellige, 2012, 2(3):32-42.
|
[3] |
Silva A S, Ma H, Mei Y, et al. A survey of evolutionary computation for web service composition: A technical perspective[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4(4):538-554.
doi: 10.1109/TETCI.2020.2969213
|
[4] |
Peng S, Wang H, Yu Q. Multi-clusters adaptive brain storm optimization algorithm for QoS-aware service composition[J]. IEEE Access, 2020(8):48822-48835.
|
[5] |
Li C, Li J, Chen H. A meta-heuristic-based approach for Qos-aware service composition[J]. IEEE Access, 2020(8):69579-69592.
|
[6] |
Alayed H, Dahan F, Alfakih T, et al. Enhancement of ant colony optimization for QoS-aware web service selection[J]. IEEE Access, 2019(7):97041-97051.
|
[7] |
Gabrel V, Manouvrier M, Moreau K, et al. QoS-aware automatic syntactic service composition problem: complexity and resolution[J]. Future Generation Computer Systems, 2018, 80(1):311-321.
doi: 10.1016/j.future.2017.04.009
|
[8] |
Li J, Fan G, Zhu M, et al. Pre-joined semantic indexing graph for QoS-aware service composition[C]. Milan: Proceedings of the IEEE International Conference on Web Services, 2019.
|
[9] |
Fan S L, Peng K Y, Yang Y B. Large-scale QoS-aware service composition integrating chained dynamic programming and hybrid pruning[C]. Seattle: Proceedings of the International Conference on Web Services, 2018.
|
[10] |
Xu X, Sheng Q Z, Wang Z, et al. Novel artificial bee colony algorithms for QoS-aware service selection[J]. IEEE Transactions on Services Computing, 2016, 12(2):247-261.
doi: 10.1109/TSC.2016.2612663
|
[11] |
Fan S L, Ding F, Guo C H, et al. Supervised web service composition integrating multi-objective QoS optimization and service quantity minimization[C]. Seattle: Proceedings of the International Conference on Web Services, 2018.
|
[12] |
Xie Y, Guo Y, Mi Z, et al. Loosely coupled cloud robotic framework for QoS-driven resource allocation-based Web service composition[J]. IEEE Systems Journal, 2019, 14(1):1245-1256.
doi: 10.1109/JSYST.2019.2904098
|
[13] |
Min X, Xu X, Liu Z, et al. An approach to resource and QoS-aware services optimal composition in the big service and internet of things[J]. IEEE Access, 2018(6):39895-39906.
|
[14] |
Chen Y, Huang J, Lin C, et al. Multi-objective service composition with QoS dependencies[J]. IEEE Transactions on Cloud Computing, 2016, 7(2):537-552.
doi: 10.1109/TCC.2016.2607750
|
[15] |
Gavvala S K, Jatoth C, Gangadharan G R, et al. QoS-aware cloud service composition using eagle strategy[J]. Future Generation Computer Systems, 2019, 90(2):273-290.
doi: 10.1016/j.future.2018.07.062
|
[16] |
Moustafa A, Ito T. A deep reinforcement learning approach for large-scale service composition[C]. Tokyo: Proceedings of the International Conference on Principles and Practice of Multi-Agent Systems, 2018.
|
[17] |
Philip S Y. Multi-agent reinforcement learning for service composition[C]. San Francisco: Proceedings of the IEEE International Conference on Services Computing, 2016.
|
[18] |
Wang H B, Wang X J, Zhang X Z, et al. Effective service composition using multi-agent reinforcement learning[J]. Knowledge-Based Systems, 2016, 92(3):151-168.
doi: 10.1016/j.knosys.2015.10.022
|
[19] |
Wang H, Wang X, Hu X, et al. A multi-agent reinforcement learning approach to dynamic service composition[J]. Info-rmation Sciences, 2016, 36(3):96-119.
|
[20] |
Ren L, Wang W, Xu H. A reinforcement learning method for constraint-satisfied services composition[J]. IEEE Transactions on Services Computing, 2017(3):1-12.
|
[21] |
杨波, 胡国兵. 利用记忆单元改进DQN的Web服务组合优化方法[J]. 计算机应用与软件, 2020, 37(11):11-17.
|
|
Yang Bo, Hu Guobing. A web service composition optimization approach based on memory units and improved DQN[J]. Computer Applications and Software, 2020, 37(11):11-17.
|
[22] |
Liu J W, Hu L Q, Cai Z Q, et al. Large-scale and adaptive service composition based on deep reinforcement learning[J]. Journal of Visual Communication and Image Representation, 2019, 6(5):1-5.
doi: 10.1006/jvci.1995.1001
|
[23] |
Wang H B, Gu M Z, Yu Q, et al. Large-scale and adaptive service composition using deep einforcement learning[C]. Malaga: Proceedings of the International Conference on Service-Oriented Computing, 2017.
|
[24] |
Wang H, Gu M, Yu Q, et al. Adaptive and large-scale service composition based on deep reinforcement learning[J]. Knowledge-Based Systems, 2019, 18(7):75-90.
|
[25] |
Zhao Y, Wang S, Zou Y, et al. Automatically learning user preferences for personalized service composition[C]. Honolulu: Proceedings of the IEEE International Conference on Web Services, 2017.
|
[26] |
Zanbouri K, Jafari Navimipour N. A cloud service composition method using a trust-based clustering algorithm and honeybee mating optimization algorithm[J]. International Journal of Communication Systems, 2020, 33(5):4259-4269.
|
[27] |
Li F, Zhang L, Liu Y, et al. A clustering network-based approach to service composition in cloud manufacturing[J]. International Journal of Computer Integrated Manufacturing, 2017, 30(12):1331-1342.
doi: 10.1080/0951192X.2017.1314015
|
[28] |
Khanouche M E, Attal F, Amirat Y, et al. Clustering-based and QoS-aware services composition algorithm for ambient intelligence[J]. Information Sciences, 2019, 48(2):419-439.
|
[29] |
Silva A S, Mei Y, Ma H, et al. Evolutionary computation for automatic web service composition:An indirect representation approach[J]. Journal of Heuristics, 2018, 24(3):425-456.
doi: 10.1007/s10732-017-9330-4
|
[30] |
Sadeghiram S, Ma H, Chen G. Cluster-guided genetic algorithm for distributed data-intensive web service composition[C]. Rio de Janeiro: Proceedings of the IEEE Congress on Evolutionary Computation, 2018.
|
[31] |
Haytamy S, Omara F. A deep learning based framework for optimizing cloud consumer QoS-based service composition[J]. Computing, 2020, 10(2):1117-1137.
|
[32] |
Labbaci H, Medjahed B, Aklouf Y. A deep learning approach for long term QoS-compliant service composition[C]. Malaga: Proceedings of the International Conference on Service-Oriented Computing, 2017.
|
[33] |
Wang H, Li J, Yu Q, et al. Integrating recurrent neural networks and reinforcement learning for dynamic service composition[J]. Future Generation Computer Systems, 2020, 10(7):551-563.
|
[34] |
Elsayed D H, Nasr E S, Alaa El Din M, et al. A new hybrid approach using genetic algorithm and Q-learning for QoS-aware web service composition[C]. Cairo: Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, 2017.
|