[1] |
中国互联网络信息中心. 第49次《中国互联网络发展状况统计报告》[J]. 新闻潮, 2022, 1(2):1-2.
|
|
CNNIC. The forty-ninth statistical report on the devel-opment of Internet in China[J]. Journalism Tide, 2022, 1(2):1-2.
|
[2] |
Wang X, Wei Y, Xing Y, et al. Research on the dynamics and trends of the development of public opinion topic maps in social networks[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(12):1329-1338.
|
[3] |
张航, 张欣, 张平康. 基于Hadoop的精准扶贫大数据信息系统[J]. 电子科技, 2018, 31(7):59-62,71.
|
|
Zhang Hang, Zhang Xin, Zhang Pingkang. Big data info-rmation system for targeted poverty alleviation based on Hadoop[J]. Electronic Science and Technology, 2018, 31(7):59-62,71.
|
[4] |
Liu D, Zhang H, Yu H, et al. Research on network publicopinion analysis and monitor method based on big data technology[C]. Beijing: IEEE the Tenth International Conference on Electronics Information and Emergency Communication, 2020.
|
[5] |
Pan Y, Liang M. Chinese text sentiment analysis based on BI-GRU and self-attention[C]. Chongqing: IEEE the Fourth Information Technology,Networking,Electronic and Automation Control Conference, 2020.
|
[6] |
Mao S B, Rajan D, Chia L T. Deep residual pooling net-work for texture recognition[J]. Pattern Recognition, 2021, 112(4):107817-107825.
doi: 10.1016/j.patcog.2021.107817
|
[7] |
Vamshi K B, Pandey A K, Siva KA P. Topic model based opinion mining and sentiment analysis[C]. Coimbatore: International Conference on Computer Communication and Informatics, 2018.
|
[8] |
Wei W, Xiang Y, Chen Q. Survey on Chinese text senti-ment analysis[J]. Journal of Computer Applications, 2011, 31(12):3321-3323.
|
[9] |
Anbukkarasi S, Varadhaganapathy S. Analyzing sentiment in tamil tweets using deep neural network[C]. Erode: The Fourth International Conference on Computing Methodologies and Communication, 2020.
|
[10] |
Li M, Lu Q, Long Y, et al. Inferring affective meanings of words from word embedding[J]. IEEE Transactions on Affective Computing, 2017, 8(4):443-456.
doi: 10.1109/TAFFC.2017.2723012
|
[11] |
Rueden L V, Mayer S, Beckh K, et al. Informed machine learning-A taxonomy and survey of integrating prior knowledge into learning systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(5):1-7.
|
[12] |
Liu G, Guo J B. Bidirectional LSTM with attention mechanism and convolutional layer for text classification[J]. Neurocomputing, 2019, 337(4):325-338.
doi: 10.1016/j.neucom.2019.01.078
|
[13] |
Prabowo Y D, Warnars H L H S, Budiharto W, et al. Lstm and simple Rnn comparison in the problem of sequence to sequence on conversation data using bahasaindonesia[C]. Tangerang: Indonesian Association for Pattern Recognition International Conference, 2018.
|
[14] |
Xiao J, Zhou Z. Research progress of RNN language model[C]. Dalian: IEEE International Conference on Artificial Intelligence and Computer Applications, 2020.
|
[15] |
葛靖, 刘子龙. 基于CNN和LSTM的睡眠呼吸暂停检测算法[J]. 电子科技, 2021, 34(2):21-26.
|
|
Ge Jing, Liu Zilong. The algorithm based on CNN and LSTM for sleep apnea syndrome detection[J]. Electronic Science and Technology, 2021, 34(2):21-26.
|
[16] |
Araque O, Corcuera-Platas I, Sanchez-Rada J F, et al. En-hancing deep learning sentiment analysis with ensemble techniques in social applications[J]. Expert Systems with Applications, 2017, 77(7):236-246.
doi: 10.1016/j.eswa.2017.02.002
|
[17] |
Li G, Zheng Q, Zhang L, et al. Sentiment infomation based model for Chinese text sentiment analysis[C]. Shenyang: IEEE the Third International Conference on Automation,Electronics and Electrical Engineering, 2020.
|
[18] |
Niu G, Zhu F, Chen Z, et al. Efficient visualization system construction using common data model[C]. Weihai: IEEE the Second International Conference on Civil Aviation Safety and Information Technology, 2020.
|