电子科技 ›› 2023, Vol. 36 ›› Issue (1): 75-80.doi: 10.16180/j.cnki.issn1007-7820.2023.01.011

• • 上一篇    下一篇

基于改进CNN的轴承声学故障诊断

黄雅静1,廖爱华1,于淼2,李晓龙2,胡定玉1,3   

  1. 1.上海工程技术大学 城市轨道交通学院,上海 201620
    2.中国铁路哈尔滨局集团有限公司 哈尔滨动车段,黑龙江 哈尔滨 150000
    3.上海市轨道交通振动与噪声控制技术工程研究中心,上海 201620
  • 收稿日期:2022-07-07 出版日期:2023-01-15 发布日期:2023-01-17
  • 作者简介:黄雅静(1997-),女,硕士研究生。研究方向:旋转信号处理、智能故障诊断。|廖爱华(1978-),女,博士,副教授。研究方向:车辆动力学、车辆故障诊断等。
  • 基金资助:
    国家自然科学基金(51605274);上海市地方院校能力建设项目(20030501000)

An Improved CNN Method for Bearing Acoustic Fault Diagnosis

HUANG Yajing1,LIAO Aihua1,YU Miao2,LI Xiaolong2,HU Dingyu1,3   

  1. 1. School of Urban Railway Transportation,Shanghai University of Engineering Science, Shanghai 201620,China
    2. Harbin EMU,China Railway Harbin Bureau Group Co., Ltd., Harbin 150000,China
    3. Shanghai Engineering Research Center of Railway Noise and Vibration Control,Shanghai 201620,China
  • Received:2022-07-07 Online:2023-01-15 Published:2023-01-17
  • Supported by:
    National Natural Science Foundation of China(51605274);Shanghai Local College Capacity Building Project(20030501000)

摘要:

针对轴承振动信号在复杂机械中难采集和跨转速域工况下传统故障诊断方法精度低的问题,文中提出了一种基于Teager 能量算子和卷积神经网络的滚动轴承声学故障诊断方法,即TEO-CNN。将轴承声学信号的Teager 能量算子作为模型的输入,使用卷积神经网络学习输入的抽象特征,并结合全局平均池化层和全连接层实现轴承健康状态识别。模型验证基于轴承声学实验数据,并通过构建不同的轴承声学数据集模拟跨转速域工况。试验结果表明,与传统卷积神经网络和机器学习模型相比,TEO-CNN表现出明显的优势,并且在跨转速域工况下的预测精度始终高于95%。

关键词: 卷积神经网络, Teager 能量算子, 声学故障诊断, 滚动轴承, 跨转速域工况, 全局平均池化

Abstract:

In view of the difficulty to collect bearing vibration signals in complex machinery and the poor accuracy of traditional fault diagnosis methods under cross working speed conditions, a rolling bearing acoustic fault diagnosis method is proposed based on TEO-CNN. Teager energy operator of raw acoustic signals is taken as the input of TEO-CNN model, the CNN is employed to extract the abstract features from inputs, and the global average pooling layer and the fully connected layer are combined to recognize the bearing health status. TEO-CNN is verified on bearing acoustic experimental data sets, and cross working speed conditions are simulated by constructing different bearing acoustic data sets. Experimental results show that compared with traditional convolutional neural networks and machine learning models, the proposed TEO-CNN shows obvious superiority, and the prediction accuracy is always higher than 95% under cross working speed conditions.

Key words: convolutional neural network, Teager energy operator, acoustic-based fault diagnosis, rolling bearing, cross working speed conditions, global average pooling

中图分类号: 

  • TP391.5