[1] |
郑国刚, 戴光泽, 张敏男. 基于能量熵和EEMD结合的滚动轴承故障诊断方法[J]. 现代制造工程, 2021(5):139-145.
|
|
Zheng Guogang, Dai Guangze, Zhang Minnan. Fault diagnosis method of rolling bearing based on energy entropy and EEMD[J]. Modern Manufacturing Engineering, 2021(5):139-145.
|
[2] |
Liu R, Yang B, Zio E, et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems & Signal Processing, 2018, 10(8):33-47.
|
[3] |
李卫鹏, 曹岩, 李丽娟. 正交小波变换k-中心点聚类算法在故障诊断中的应用[J]. 振动与冲击, 2021, 40(7):291-296.
|
|
Li Weipeng, Cao Yan, Li Lijuan. Orthogonal wavelet transform KCA in fault diagnosis[J]. Journal of Vibration and Shock, 2021, 40(7):291-296.
|
[4] |
蒋玲莉, 谭鸿创, 李学军, 等. 基于CEEMDAN排列熵与SVM的螺旋锥齿轮故障识别[J]. 振动.测试与诊断, 2021, 41(1):33-40.
|
|
Jiang Lingli, Tan Hongchuang, Li Xuejun, et al. Fault diagnosis of spiral bevel gear based on CEEMDAN permutation entropy and SVM[J]. Journal of Vibration,Measurement & Diagnosis, 2021, 41(1):33-40.
|
[5] |
牟竹青. 基于KPCA-LSSVM的单向阀故障诊断研究[J]. 电子科技, 2019, 32(3):10-14.
|
|
Mou Zhuqing. Study on the fault diagnosis of check valve based on KPCA-LSSVM[J]. Electronic Science and Technology, 2019, 32(3):10-14.
|
[6] |
徐欣怡, 徐永能, 任宇超. 基于小波神经网络的地铁轴承故障诊断方法[J]. 兵器装备工程学报, 2020, 41(12):177-181.
|
|
Xu Xinyi, Xu Yongneng, Ren Yuchao. New wavelet neural network method for fault diagnosis of metro bearings[J]. Journal of Ordnance Equipment Engineering, 2020, 41(12):177-181.
|
[7] |
Zhao R, Yan R, Chen Z, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 11(5):213-237.
|
[8] |
Zhang W, Li C, Peng G, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems and Signal Processing, 2017, 10(4):439-453.
doi: 10.1006/mssp.1996.0031
|
[9] |
邓佳林, 邹益胜, 张笑璐, 等. 一种改进CNN在轴承故障诊断中的应用[J]. 现代制造工程, 2020(4):142-147.
|
|
Deng Jialin, Zou Yisheng, Zhang Xiaolu, et al. Application of an improved CNN in fault diagnosis of bearings[J]. Modern Manufacturing Engineering, 2020(4):142-147.
|
[10] |
闫书豪, 乔美英. 基于一维Wconv-BiLSTM的轴承故障诊断算法[J]. 电子科技, 2021, 34(4):75-82.
|
|
Yan Shuhao, Qiao Meiying. Bearing fault diagnosis algorithm based on one-dimensional Wconv-BiLSTM[J]. Electronic Science and Technology, 2021, 34(4):75-82.
|
[11] |
Yao J, Liu C, Song K, et al. Fault detection of complex planetary gearbox using acoustic signals[J]. Measurement, 2021, 178(4):1-14.
|
[12] |
Yao J, Liu C, Song K, et al. Fault diagnosis of planetary gearbox based on acoustic signals[J]. Applied Acoustics, 2021, 18(1):1-11.
doi: 10.1016/0003-682X(85)90002-7
|
[13] |
Zhang D, Stewart E, Entezami M, et al. Intelligent acoustic-based fault diagnosis of roller bearings using a deep graph convolutional network[J]. Measurement, 2020, 15(6):1-9.
doi: 10.1016/0263-2241(94)00031-2
|
[14] |
王桥梅, 吴浩, 杨杰, 等. 基于Teager能量算子和1D-CNN的HVDC输电线路故障识别方法[J]. 智慧电力, 2021, 49(5):93-100.
|
|
Wang Qiaomei, Wu Hao, Yang Jie, et al. Fault identification method of HVDC transmission line based on teager energy operator and 1D-CNN[J]. Smart Power, 2021, 49(5):93-100.
|
[15] |
Rodríguez P H, Alonso J B, Ferrer M A, et al. Application of the Teager-Kaiser energy operator in bearing fault diagnosis[J]. Isa Transactions, 2013, 52(2):278-284.
doi: 10.1016/j.isatra.2012.12.006
pmid: 23352553
|
[16] |
Han T, Liu Q, Zhang L, et al. Fault feature extraction of low speed roller bearing based on Teager energy operator and CEEMD[J]. Measurement, 2019, 13(8):400-408.
|
[17] |
谢锋云, 符羽, 王二化, 等. 基于多特征提取和LSSVM的轴承故障诊断[J]. 机床与液压, 2020, 48(17):188-190.
|
|
Xie Fengyun, Fu Yu, Wang Erhua, et al. Bearing fault diagnosis based on multi-feature extraction and LSSVM[J]. Machine Tool & Hydraulics, 2020, 48(17):188-190.
|
[18] |
Yang Z, Wang C, Oja E. Multiplicative updates for t-SNE[C]. Kittila: Proceeding of IEEE International Workshop on Machine Learning For Signal Processing, 2010.
|