[1] |
Du S, Shehata M, Badawy W. Hard hat detection in video sequences based on face features, motion and color information[C]. Shanghai: Proceedings of the Third International Conference on Computer Research and Development, 2011.
|
[2] |
Fang Q, Li H, Luo X C. Detection non-hardhat-use by a deep learning method from far field surveillance videos[J]. Automation in Construction, 2018, 85(1):1-9.
doi: 10.1016/j.autcon.2017.09.018
|
[3] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN:To-wards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28(2):91-99.
|
[4] |
方明, 孙腾腾, 邵桢. 基于改进YOLOv2的快速安全帽佩戴检测情况检测[J]. 光学精密工程, 2019, 27(5):1196-1205.
doi: 10.3788/OPE.
|
|
Fang Ming, Sun Tengteng, Shao Zhen. Fast helmet-wearing condition detection based on improved YOLOv2[J]. Optics and Precision Engineering, 2019, 27(5):1196-1205.
doi: 10.3788/OPE.
|
[5] |
Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[6] |
Howard A G, Zhu M L, Chen B, et al. MobileNets:Efficient convolutional neural networks for mobile vision applications[C]. Honolulu: Proceedings of the International Conference on Computer Vision and Pattern Recognition, 2017.
|
[7] |
徐守坤, 王雅如, 顾玉宛, 等. 基于改进Faster RCNN的安全帽佩戴检测研究[J]. 计算机应用研究, 2020, 37(3):901-905.
|
|
Xu Shoukun, Wang Yaru, Gu Yuwan, et al. Safety helmet wearing detection study based on improved Faster RCNN[J]. Application Research of Computers, 2020, 37(3):901-905.
|
[8] |
仝泽友, 冯仕民, 侯晓晴, 等. 基于安全帽佩戴检测的矿山人员违规行为研究[J]. 电子科技, 2019, 32(9):26-31.
|
|
Tong Zeyou, Feng Shimin, Hou Xiaoqing, et al. Recognition of underground miners’ rule-violated behavior based on safety helmet detection[J]. Electronic Science and Technology[J]. 2019, 32(9):26-31.
|
[9] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(12):1097-1105.
|
[10] |
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition[C]. Banff: Proceedings of the International Conference on Learning Representations, 2014.
|
[11] |
Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector[C]. Amsterdam: Proceedings of the European Conference on Computer Vision, 2016.
|
[12] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]. Washington,D.C.:Proce-edings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[13] |
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017.
|
[14] |
Bochkovskly A, Wang C Y, Liao H Y M. YOLOv4:Optimal speed and accuracy of object detection[C]. Seattle: Proceedings of the International Conference on Computer Vision and Pattern Recognition, 2020.
|
[15] |
Tan M, Pang R, Le Q V. EfficientDet:Scalable and effi-cient object detection[C]. Washington,D.C.:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
|
[16] |
Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]. Washington,D.C.:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|
[17] |
Guo C X, Fan B, Zhang Q, et al. AugFPN:Impeoving multi-scale feature learning for object detection[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
|
[18] |
Liu S T, Huang D, Wang Y H. Learning spatial fusion for single-shot object detection[J]. Computing Research Repository, 2019,1-10.
|
[19] |
王平, 江雨泽, 赵光辉. 目标检测的多尺度定位提升算法[J]. 西安电子科技大学学报, 2021, 48(3):85-90.
|
|
Wang Ping, Jiang Yuze, Zhao Guanghui. Object detectionbased on the multiscale location enhancement network[J]. Journal of Xidian University, 2021, 48(3):85-90.
|
[20] |
袁帅, 王康, 单义, 等. 基于多分支并行空洞卷积的多尺度目标检测算法[J]. 计算机辅助设计与图形学学报, 2021, 33(6):864-872.
|
|
Yuan Shuai, Wang Kang, Shan Yi, et al. Multi-scale obj-ect detection method based on multi-branch parallel dilated convolution[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(6):864-872.
|
[21] |
Liu S T, Huang D. Receptive filed block net for accurate and fast object detection[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018.
|
[22] |
刘晋, 邓洪敏, 徐泽林, 等. 面向目标识别的轻量化混合卷积神经网络[J]. 计算机应用, 2021, 41(10):1-8
|
|
Liu Jin, Deng Hongmin, Xu Zelin, et al. Lightweight hybrid convolutional neural network for object recognition[J]. Journal of Computer Applications, 2021, 41(10):1-8.
|