[1] |
赵广辉, 卓松, 徐晓龙. 基于卡尔曼滤波的多目标跟踪方法[J]. 计算机科学, 2018, 45(8):253-257.
doi: 10.11896/j.issn.1002-137X.2018.08.045
|
|
Zhao Guanghui, Zhuo Song, Xu Xiaolong. Multi-object tracking algorithm based on Kalman filter[J]. Computer Science, 2018, 45(8):253-257.
doi: 10.11896/j.issn.1002-137X.2018.08.045
|
[2] |
王旭, 程婷, 吴小平, 等. 一种基于预测值量测转换的卡尔曼滤波跟踪算法[J]. 电讯技术, 2018, 58(10):1158-1162.
|
|
Wang Xu, Cheng Ting, Wu Xiaoping, et al. A Kalman filter algorithm for target tracking based on predicted position based unbiased converted measurements[J]. Telecommunication Engineering, 2018, 58(10):1158-1162.
|
[3] |
崔龙飞, 张星, 吴晓朝, 等. 基于当前模型自适应改进的航迹跟踪算法[J]. 电子科技, 2017, 30(9):117-121.
|
|
Cui Longfei, Zhang Xing, Wu Xiaochao, et al. An adaptively adjusting improved algorithm of trajectory tracking based on current statistical model[J]. Electronic Science and Technology, 2017, 30(9):117-121.
|
[4] |
杨峰, 张婉莹. 一种多模型贝努利粒子滤波机动目标跟踪算法[J]. 电子与信息学报, 2017, 39(3):634-639.
|
|
Yang Feng, Zhang Wanying. Multiple model Bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics & Information Technology, 2017, 39(3):634-639.
|
[5] |
张红玉. 基于交互多模型的机动目标跟踪算法研究[D]. 大连: 大连海事大学, 2017:30-48.
|
|
Zhang Hongyu. Research on maneuvering target tracking algorithm based on interactive multi-model[D]. Dalian: Dalian Maritime University, 2017:30-48.
|
[6] |
周昆正. 基于IMM-RDCKF的机动目标跟踪算法[J]. 雷达科学与技术, 2018, 16(6):656-660.
|
|
Zhou Kunzheng. Maneuvering target tracking algorithm based on IMM-RDCKF[J]. Radar Science and Technology, 2018, 16(6):656-660.
|
[7] |
蔺红明, 魏兵卓, 曹政, 等. 一种用于搜索雷达的交互多模型跟踪滤波算法[J]. 无线电工程, 2019, 49(12):1057-1062.
|
|
Lin Hongming, Wei Bingzhuo, Cao Zheng, et al. An interactive multi-model tracking and filtering algorithm for search radars[J]. Radio Engineering, 2019, 49(12):1057-1062.
|
[8] |
赵兵, 王桁. 交互多模型Kalman滤波下的目标跟踪应用研究[J]. 电子测量技术, 2019, 42(11):83-86.
|
|
Zhao Bing, Wang Heng. Research on the application of interactive multi-model Kalman filtering in target tracking[J]. Electronic Measurement Technology, 2019, 42(11):83-86.
|
[9] |
Li B, Pang F, Liang C, et al. Improved interactive multiple model filter for maneuvering target tracking[C]. Nanjing: Proceedings of the Thirty-third Chinese Control Conference, 2014:7312-7316.
|
[10] |
Sherstinsky A. Fundamentals of recurrent neural network and long short-term memory network[J]. Physica D: Nonlinear Phenomena, 2020, 40(4):306-325.
|
[11] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[12] |
Gao C, Liu H W, Zhou S H, et al. Maneuvering target tracking with recurrent neural networks for radar application[C]. Brisban: International Conference on Radar,IEEE, 2018:1-5.
|
[13] |
Gao C, Yan J K, Zhou S H, et al. Long short-term memory-based deep recurrent neural networks for target tracking[J]. Information Sciences, 2019, 50(2):279-296.
|
[14] |
Liu J X, Wang Z L, Xu M. DeepMTT:A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network[J]. Information Fusion, 2020, 53(7):289-304.
doi: 10.1016/j.inffus.2019.06.012
|
[15] |
Yu W T, Yu H Y, Du J P, et al. DeepGTT:A general trajectory tracking deep learning algorithm based on dynamic law learning[J]. IET Radar,Sonar & Navigation, 2021, 15(9):1125-1150.
doi: 10.1049/rsn2.v15.9
|
[16] |
刘金铭, 张玉艳, 张碧玲. 基于LSTM-KF的无人机航迹跟踪算法[J]. 北京邮电大学学报, 2022, 45(5):121-128.
|
|
Liu Jinming, Zhang Yuyan, Zhang Biling. Trajectory estimation algorithm for unmanned aerial vehicle based on LSTM-KF[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(5):121-128.
|
[17] |
张宇行, 吕泽均. 基于LSTM模型的航迹跟踪[J]. 信息通信, 2020, 205(1):62-64.
|
|
Zhang Yuxing, Lü Zejun. Track tracking based on LSTM model[J]. Changjiang Information & Communications, 2020, 205(1):62-64.
|
[18] |
赵子瑜. 基于深度LSTM的四维航迹预测方法及应用[D]. 南京: 南京航空航天大学, 2020:28-36.
|
|
Zhao Ziyu. 4D track prediction method and application based on deep LSTM[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020:28-36.
|
[19] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30(5):257-270.
|
[20] |
Liu Jingxian, Wang Zulin, Xu Mai. A Kalman estimation based Rao-Blackwellized particle filtering for radar tracking[J]. IEEE Access, 2017(5):8162-8174.
|
[21] |
Kazemi M, Goel R, Eghbali S, et al. Time2vec: Learning a vector representation of time[EB/OL].(2019-07-11) [2023-03-01]https://arxiv.org/abs/1907.05321.
|