[1] |
洪超. 我国城市轨道交通发展趋势分析[J]. 中国市场, 2021(4):53-54.
|
|
Hong Chao. Analysis on the development trend of urban rail transit in China[J]. China Market, 2021(4):53-54.
|
[2] |
Zhao Y L, Li Y H, Yang L M. Research on automatic drive technology of high-speed railway rail-laying vehicles[C]. Bangkok: Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, 2006:1-5.
|
[3] |
王伟. 一种基于特征点的高速公路弯道识别算法研究[J]. 长春工程学院学报, 2020, 3(23):105-107.
|
|
Wang Wei. Research on a freeway curve recognition algorithm based on feature points[J]. Journal of Changchun Institute of Engineering, 2020, 3(23):105-107.
|
[4] |
胡延平, 王乃汉, 魏振亚, 等. 一种基于卡方统计的弯道识别算法[J]. 汽车工程学报, 2018, 8(6):446-452.
|
|
Hu Yanping, Wang Naihan, Wei Zhenya, et al. A curve recognition algorithm based on chi-square statistics[J]. Journal of Automotive Engineering, 2018, 8(6):446-452.
|
[5] |
Muthalagua R, Bolimera A, Kalaichelvi V. Lane detection technique based on perspective transformation and histogram analysis for self-driving cars[J]. Computers and Electrical Engineering, 2020, 85(7):185-196.
|
[6] |
王宝锋, 齐志权, 马国成, 等. 基于线性逼近的车道线弯道识别方法[J]. 北京理工大学学报, 2016, 36(5):470-474.
|
|
Wang Baofeng, Qi Zhiquan, Ma Guocheng, et al. Lane curve recognition method based on linear approximation[J]. Transactions of Beijing Institute of Technology, 2016, 36(5):470-474.
|
[7] |
何鹏, 高峰, 魏厚敏. 基于Catmull-Rom样条曲线的弯曲车道线检测研究[J]. 汽车工程学报, 2015, 4(6):276-281.
|
|
He Peng, Gao Feng, Wei Houmin. Research on curved lane line detection based on Catmull-Rom spline curve[J]. Journal of Automotive Engineering, 2015, 4(6):276-281.
|
[8] |
郭碧, 董昱. 基于分段曲线模型的铁路轨道检测算法[J]. 铁道科学与工程学报, 2017, 14(2):355-363.
|
|
Guo Bi, Dong Yu. Railway track detection algorithm based on piecewise curve model[J]. Journal of Railway Science and Engineering, 2017, 14(2):355-363.
|
[9] |
D'Innocente A, Carlucci F M, Colosi M, et al. Bridging between computer and robot vision through data augmentation: A case study on object recognition[C]. Shenzhen: Proceedings of the International Conference on Computer Vision Systems, 2017:384-393.
|
[10] |
刘军, 张睿, 胡超超. 基于车道线的车辆测距方法的测距误差分析与改进[J]. 激光与光电子学进展, 2020, 57(18):297-301.
|
|
Liu Jun, Zhang Rui, Hu Chaochao. Analysis and improvement of ranging error of vehicle ranging method based on lane line[J]. Progress in Laser and Optoelectronics, 2020, 57(18):297-301.
|
[11] |
Eric Matthes. Python编程从入门到实践[M]. 北京: 人民邮电出版社, 2016:92-114.
|
|
Eric Matthes. Python programming from introduction to practice[M]. Beijing: Posts & Telecom Press, 2016:92-114.
|
[12] |
毛星云, 冷雪飞. OpenCV3编程入门[M]. 北京: 电子工业出版社, 2015:35-67.
|
|
Mao Xingyun, Leng Xuefei. OpenCV3 programming primer[M]. Beijing: Publishing House of Electronics Industry, 2015:35-67.
|
[13] |
Yella S, Nyberg R G, Payvar B, et al. Machine vision approach for automating vegetation detection on railway tracks[J]. Journal of Intelligent Systems, 2013, 22(2):179-196.
doi: 10.1515/jisys-2013-0017
|
[14] |
巨志勇, 张文馨, 翟春宇. 基于改进Canny算子的垃圾图像边缘检测[J]. 电子科技, 2020, 33(8):16-20.
|
|
Ju Zhiyong, Zhang Wenxin, Zhai Chunyu. Garbage image edge detection based on improved Canny algorithm[J]. Electronics Science and Technology, 2020, 33(8):16-20.
|
[15] |
王永超. 基于深度学习的车道线检测[D]. 秦皇岛: 燕山大学, 2018:35-48.
|
|
Wang Yongchao. Lane line detection based on deep learning[D]. Qinhuangdao: Yanshan University, 2018: 35-48.
|
[16] |
胡忠闯. 基于深度学习的车道线检测算法研究[D]. 杭州: 浙江大学, 2018:25-68.
|
|
Hu Zhongchuang. Research on lane line detection algorithm based on deep learning[D]. Hangzhou: Zhejiang University, 2018:25-68.
|
[17] |
Neven D, Brabandere B D, Georgoulis S, et al. Towards end-to-end lane detection: An instance segmentation approach[C]. Changshu: Proceedings of the Twenty-ninth IEEE Intelligent Vehicles Symposium, 2018:286-291.
|
[18] |
杨云辉. 基于单目视觉的工件定位技术研究[J]. 电子科技, 2019, 32(12):72-75.
|
|
Yang Yunhui. Research on workpiece positioning technology based on monocular vision[J]. Electronic science and technology, 2019, 32(12):72-75.
|
[19] |
Guo L, Zhao Y B, Li L H, et al. Antisideslip and antirollover safety speed controller design for vehicle on curved road[J]. Mathematical Problems in Engineering, 2014, 10(1):1-12.
|