电子科技 ›› 2023, Vol. 36 ›› Issue (6): 72-79.doi: 10.16180/j.cnki.issn1007-7820.2023.06.011

• • 上一篇    下一篇

基于改进GD-HASLR算法的遮挡人脸识别

徐恬恬,席志红   

  1. 哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
  • 收稿日期:2021-12-28 出版日期:2023-06-15 发布日期:2023-06-20
  • 作者简介:徐恬恬(1997-),女,硕士研究生。研究方向:遮挡人脸识别的算法。|席志红(1965-),女,教授,博士生导师。研究方向:图像处理与应用等。
  • 基金资助:
    国家自然科学基金(60875025)

Face Recognition with Occlusion Based on Improved GD-HASLR Algorithm

XU Tiantian,XI Zhihong   

  1. School of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:2021-12-28 Online:2023-06-15 Published:2023-06-20
  • Supported by:
    National Natural Science Foundation of China(60875025)

摘要:

针对遮挡人脸识别方面的算法在训练样本数目减少时,其识别结果也会下降。为了解决该问题,文中提出了一种改进的GD-HASLR(Gradient Direction-Based Hierarchical Adaptive Sparse and Low-Rank)算法。该算法先求得人脸图像的广义梯度方向,计算人脸图像从一阶到三阶的梯度大小和梯度方向,再利用映射函数进行映射后求得梯度方向向量,然后将其作为层次稀疏低秩模型的输入,求解出图像的表示系数和误差。文中采用了重启的快速迭代收缩阈值算法-II求解稀疏表示系数。最后,计算一阶到三阶测试样本的残差,选取其频率最高或者平均等级最低的类别作为分类结果。在AR、Extended Yale B数据库上的实验结果表明,与GD-HASLR等方法相比,文中改进方法获得的识别效果更好。

关键词: 遮挡, 人脸识别, 广义梯度方向, 梯度大小, 梯度方向, 层次稀疏低秩模型, 重启快速迭代收缩阈值算法-II, GD-HASLR

Abstract:

When the number of training samples is reduced, the recognition result of occlusion face recognition algorithm will also decrease. To solve this problem, an improved GD-HASLR algorithm is proposed. Firstly, the algorithm obtains the generalized gradient direction of the face image, and calculates the gradient size and gradient direction of the face image from the first order to the third order. Then, after mapping with the mapping function, the gradient direction vector is obtained, which is used as the input of the hierarchical sparse low-rank model, and the representation coefficient and error of the image are obtained. In this study, a restarted fast algorithm with shrinkage threshold-II is adopted to solve the sparse representation coefficient. Finally, the residuals of the first order to the third order test samples are calculated respectively, and the category with the highest frequency or the lowest average grade is selected as the classification result. Experimental results on AR and Extended Yale B databases show that compared with GD-HASLR and other methods, the recognition effect of the improved method proposed in this study is better.

Key words: occlusion, face recognition, generalized gradient direction, gradient size, gradient direction, hierarchical sparse low-rank model, restart fast iterative shrinkage thresholding algorithm-II, GD-HASLR

中图分类号: 

  • TP391.4