[1] |
刘满良, 孟辉, 王新宇, 等. 视频侦查中人脸识别准确率的影响因素分析[J]. 中国刑警学院学报, 2019(1):119-123.
|
|
Liu Manliang, Meng Hui, Wang Xinyu, et al. Analysis of influencing on the accuracy of face recognition in video investigations[J]. Journal of China Criminal Police University, 2019(1):119-123.
|
[2] |
彭荣杰, 彭亚雄, 陆安江. 基于改进PCA+SVM的人脸识别系统[J]. 电子科技, 2021, 34(12):56-61.
|
|
Peng Rongjie, Peng Yaxiong, Lu Anjiang. Face recognition system based on improved PCA+SVM[J]. Electronic Science and Technology, 2021, 34(12):56-61.
|
[3] |
李晓彤. 基于图像修复的局部遮挡人脸识别方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2021:20-48.
|
|
Li Xiaotong. Research on partial occlusion face recognition method based on image inpainting[D]. Harbin:Harbin University of Science and Technology, 2021:20-48.
|
[4] |
吕世林. 结合概率协同字典学习和遮挡定位的非配合人脸识别[D]. 常州: 常州大学, 2021:30-56.
|
|
Lü Shilin. Non-cooperative face recognition combining probabilistic collaborative dictionary learning and occlusion positioning[D]. Changzhou: Changzhou University, 2021:30-56.
|
[5] |
Yang J, Luo L, Qian J, et al. Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(1):156-171.
pmid: 26930675
|
[6] |
Mishra G, Vishwakarma V P. Partial occlusion handling using quadrant-wise sparsity for face image recognition[C]. New Delhi: Proceedings of the Seventh International Conference on Computing for Sustainable Global Development, 2020:35-38.
|
[7] |
Zhang J X, Liu H R. Local occluded face recognition based on 2D-DWT and sparse representation[C].Harbin:Proceedings of the Fifth International Conference on Mechanical, Control and Computer Engineering, 2020:2110-2114.
|
[8] |
Du L, Hu H. Nuclear norm based adapted occlusion dictionary learning for face recognition with occlusion and illumination changes[J]. Neurocomputing, 2019, 34(2):133-144.
|
[9] |
何惠慧. 基于核范数的有遮挡图像分类[D]. 西安: 西安电子科技大学, 2020:35-54.
|
|
He Huihui. Image classification with occlusion based on kernel norm[D]. Xi'an: Xidian University, 2020:35-54.
|
[10] |
凡正军. 噪声和遮挡条件下的人脸识别算法研究[D]. 郑州: 中原工学院, 2021:23-46.
|
|
Fan Zhengjun. Research on face recognition algorithm under noise and occlusion conditions[D]. Zhengzhou: Zhongyuan Institute of Technology, 2021:23-46.
|
[11] |
Lai S C, Kong M, Lam K M, et al. High-resolution face recognition via deep pore-feature matching[C]. Taipei: Proceedings of the IEEE International Conference on Image Processing, 2019:3477-3481.
|
[12] |
Ge S, Li C, Zhao S, et al. Occluded face recognition in the wild by identity-diversity inpainting[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(10):3387-3397.
doi: 10.1109/TCSVT.76
|
[13] |
Dong J, Zhang L, Zhang H, et al. Occlusion-aware gan for face de-occlusion in the wild[C]. London: Proceedings of the IEEE International Conference on Multimedia and Expo, 2020:1-6.
|
[14] |
Wu C Y, Ding J J. Occluded face recognition using low-rank regression with generalized gradient direction[J]. Pattern Recognition, 2018, 80(6):256-268.
doi: 10.1016/j.patcog.2018.03.016
|
[15] |
李启朋. 非光滑凸优化问题的快速迭代收缩阈值算法研究[D]. 西安: 西安电子科技大学, 2018:35-65.
|
|
Li Qipeng. Research on fast iterative shrinkage threshold algorithm for nonsmooth convex optimization problem[D]. Xi'an: Xidian University, 2018:35-65.
|
[16] |
吴丽琼. 基于梯度的图像插值放大算法研究[D]. 济南: 山东大学, 2017:44-65.
|
|
Wu Liqiong. Research on gradient-based image interpolation and enlargement algorithm[D]. Jinan: Shandong University, 2017:44-65.
|
[17] |
Lee A, Caron F, Doucet A, et al. A hierarchical bayesian framework for constructing sparsity-inducing priors[M]. Paris:HAL-INRIA, 2010:59-77.
|
[18] |
Murphy K P. Machine learning: A probabilistic perspective[M]. Cambridge: MIT Press, 2012:35-38.
|
[19] |
侯小秋. 增广拉格朗日乘子法非严格成立的理论分析[J]. 中央民族大学学报(自然科学版), 2021, 30(3):9-15.
|
|
Hou Xiaoqiu. Theoretical analysis of the non-strict establishment of the augmented Lagrangian multiplier method[J]. Journal of the Central University for Nationalities (Natural Science Edition), 2021, 30(3):9-15.
|
[20] |
虞涛. 基于低秩稀疏分解的遮挡人脸识别研究[D]. 南京: 南京邮电大学, 2019:20-30.
|
|
Yu Tao. Research on occluded face recognition based on low-rank sparse decomposition[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019:20-30.
|