[1] |
殷跃红, 尉忠信, 朱剑英. 机器人柔顺控制研究[J]. 机器人, 1998(3):73-81.
|
|
Yin Yuehong, Wei Zhongxin, Zhu Jianying. Compliance control of robot an overview[J]. Robot, 1998(3):73-81.
|
[2] |
蔡淑敏, 王亚刚, 田涛. 智能PID控制算法研究及Matlab实现[J]. 电子科技, 2016, 29(7):43-46.
|
|
Cai Shumin, Wang Yagang, Tian Tao. Research on intelligent PID control algorithm and MATLAB simulation[J]. Electronic Science and Technology, 206, 29(7):43-46.
|
[3] |
张建军, 刘卫东, 李乐, 等. 未知环境下水下机械手智能抓取的自适应阻抗控制[J]. 上海交通大学学报, 2019, 53(3):341-347.
|
|
Zhang Jianjun, Liu Weidong, Li Le, et al. Adaptive impedance control for underwater manipulator intelligent grasping in unknown environment[J]. Journal of Shanghai Jiao Tong University, 2019, 53(3):341-347.
|
[4] |
Zhang J, Liu W, Gao L, et al. The master adaptive impedance control and slave adaptive neural network control in underwater manipulator uncertainty teleoperation[J]. Ocean Engineering, 2018, 16(5):465-479.
|
[5] |
Hogan N. Impedance control: An approach to manipulation: Part I-theory[J]. Journal of Dynamic Systems Measurement and Control, 1985, 107(1):1-7.
doi: 10.1115/1.3140702
|
[6] |
Chen J, Han D. The control of tendon-driven dexterous hands with ioint simulation[J]. Sensors, 2013, 14(1):1723-1739.
doi: 10.3390/s140101723
|
[7] |
Jamil M F A, Jalani J, Ahmad A. A new approach of active compliance control via fuzzy logic control for multifingered robot hand[C]. Tokyo: Proceedings of the First International Workshop on Pattern Recognition, 2016:1-11.
|
[8] |
张庭, 姜力, 刘宏. 仿生假手抓握力控制策略[J]. 机器人, 2012, 34(2):190-196.
doi: 10.3724/SP.J.1218.2012.00190
|
|
Zhang Ting, Jiang Li, Liu Hong, et al. A grasping force control strategy for anthropomorphic prosthetic hand[J]. Robot, 2012, 34(2):190-196.
doi: 10.3724/SP.J.1218.2012.00190
|
[9] |
Xu W, Cai C, Zou Y. Neural-network-based robot time-varying force control with uncertain manipulator-environment system[J]. Transactions of the Institute of Measurement and Control, 2014, 36(8):999-1009.
doi: 10.1177/0142331214528971
|
[10] |
Li M, Bekiroglu Y, Kragic D, et al. Learning of grasp adaptation through experience and tactile sensing[C]. Chicago: Proceedings of the International Conference on Intelligent Robots and Systems, 2014:3339-3346.
|
[11] |
Cieslak P, Ridao P. Adaptive admittance control in task-priority framework for contact force control in autonomous underwater floating manipulation[C]. Madrid: Proceedings of the International Conference on Intelligent Robots and Systems, 2018:6646-6651.
|
[12] |
Seki Y, Sagara S, Ambar R. Impedance control of dual-arm 3-link underwater robot : In the case of grasping a fixedobject lightly with one hand[C]. Busan: Proceedings of the International Conference on Information and Communication Technology Robotics, 2018:1-4.
|
[13] |
Dai P, Lu W, Le K, et al. Sliding mode impedance control for contact intervention of an I-AUV: Simulation and experimental validation[J]. Ocean Engineering, 2020, 196(15):1-11.
|
[14] |
Wang T, Li Y, Zhang J, et al. A novel bilateral impedance controls for underwater tele-operation systems[J]. Applied Soft Computing, 2020, 91(5):1-7.
|
[15] |
Jung S, Hsia T C, Bonitz R G. Force tracking impedance control of robot manipulators under unknown environment[J]. IEEE Transactions on Control Systems Technology, 2004, 12(3):474-483.
doi: 10.1109/TCST.2004.824320
|
[16] |
陈萍. 水下机械手阻抗控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2009:15-56.
|
|
Chen Ping. Research on impedance control of underwater manipulator[D]. Harbin:Harbin Engineering University, 2009:15-56.
|
[17] |
吴炳龙, 曲道奎, 徐方. 基于位置控制的工业机器人力跟踪刚度控制[J]. 机械设计与制造, 2019(1):219-222.
|
|
Wu Binglong, Qu Daokui, Xu Fang. Force tracking stiffness control for the position-based industrial robot[J]. Mechanical Design & Manufacture, 2019(1):219-222.
|
[18] |
任浩. 全自动静脉穿刺机器人感知与控制的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020:30-50.
|
|
Ren Hao. Research on perception and control of full-automatic venipuncture robot[D]. Harbin:Harbin Institute of Technology, 2020:30-50.
|