电子科技 ›› 2023, Vol. 36 ›› Issue (6): 27-33.doi: 10.16180/j.cnki.issn1007-7820.2023.06.005

• • 上一篇    下一篇

融合IMU信息的三维激光SLAM方法

张明,章国宝,朱宏伟   

  1. 东南大学 自动化学院,江苏 南京 211189
  • 收稿日期:2021-12-20 出版日期:2023-06-15 发布日期:2023-06-20
  • 作者简介:张明(1997-),男,硕士研究生。研究方向:智能机器人、激光SLAM。|章国宝(1965-),男,教授,博士生导师。研究方向:机器人、复杂系统建模。|朱宏伟(1991-),男,博士研究生。研究方向:视觉SLAM、群智能算法。
  • 基金资助:
    江苏省重点研发计划(BE2020116);江苏省重点研发计划(BE2021750)

Three-Dimensional Laser SLAM Method with IMU

ZHANG Ming,ZHANG Guobao,ZHU Hongwei   

  1. School of Automation,Southeast University,Nanjing 211189,China
  • Received:2021-12-20 Online:2023-06-15 Published:2023-06-20
  • Supported by:
    Key R&D Program of Jiangsu(BE2020116);Key R&D Program of Jiangsu(BE2021750)

摘要:

针对激光雷达SLAM(Simultaneous Localization and Mapping)算法定位精确度不高且鲁棒性较差的问题,文中提出了一种融合IMU(Inertial Measurement Unit)数据到三维点云配准过程的SLAM方法。在LeGO-LOAM(Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain)算法的研究基础上,在地面点提取环节引入IMU数据,将点云映射到世界坐标系下,减小载体抖动对地面点提取的影响。利用IMU输出信息消除点云由于载体运动产生的畸变,增强算法的鲁棒性。使用三点聚类法对一帧点云进行聚类分析,减少杂点的干扰,加快点云配准过程,提高了算法定位精度;同时引入闭环检测,减小匹配过程中的累积误差,得到全局最优解。结果表明,在大型户外干扰较多的环境中,改进SLAM算法减少了求解得到的轨迹波动,提升了点云配准精度,增强了算法的鲁棒性。

关键词: 多信息融合, 激光雷达, IMU, 三点聚类, LeGO-LOAM, 轨迹解算, 激光SLAM

Abstract:

In view of the problem of low positioning accuracy and poor robustness of the lidar SLAM(Simultaneous Localization and Mapping), this study proposes a SLAM method that combines IMU(Inertial Measurement Unit) data with the three-dimensional point cloud registration process. Based on the research of LeGO-LOAM(Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain), IMU data is introduced in the ground point extraction link, and the point cloud is mapped to the world coordinate system to reduce the influence of carrier jitter on the ground point extraction. The output information of IMU is used to eliminate the distortion of the point cloud due to the movement of the carrier and enhance the robustness of the algorithm. The three-point clustering method is used to perform cluster analysis on a frame of point cloud, which reduces the interference of noise, speeds up the point cloud registration process and improves the positioning accuracy of the algorithm. Meanwhile, closed-loop detection is introduced to reduce the cumulative error in the matching process and obtain the global optimal solution. The results show that in a large-scale outdoor interference environment, the improved SLAM algorithm reduces the trajectory fluctuations obtained by the solution, improves the point cloud registration accuracy, and enhances the robustness of the algorithm.

Key words: multiple information fusion, laser, IMU, three-point clustering, LeGO-LOAM, trajectory solution, laser SLAM

中图分类号: 

  • TP242