[1] |
Durrant Whyte H, Bailey T. Simultaneous localization and mapping:Part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2):99-110.
|
[2] |
Censi A. An ICP variant using a point-to-line metric[C]. Pasadena: Proceeding of the IEEE International Conference on Robotics and Automation, 2008:19-25.
|
[3] |
Kohlbrecher S, Von Stryk O, Meyer J, et al. A flexible and scalable SLAM system with full 3D motion estimation[C]. Kyoto: Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics, 2011:155-160.
|
[4] |
吴勇, 关胜晓. 基于无迹卡尔曼滤波器的改进SLAM问题求解方法[J]. 计算机系统应用, 2017, 26(3):30-36.
|
|
Wu Yong, Guan Shengxiao. Improved solution based on unscented Kalman filter in the SLAM[J]. Computer Systems & Applications, 2017, 26(3):30-36.
|
[5] |
Zhang J, Singh S. LOAM: Lidar odometry and mapping in real-time[C]. Berkeley: Robotics Science and Systems, 2014:1-9.
|
[6] |
Shan T, Englot B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. Madrid: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018:4758-4765.
|
[7] |
宋凯, 钟若飞, 杜黎明. 3D SLAM的室内背包移动测量系统研究[J]. 测绘科学, 2019, 44(5):126-131.
|
|
Song Kai, Zhong Ruofei, Du Liming. Research of indoor backpacked mobile mapping system based on 3D SLAM[J]. Science of Surveying and Mapping, 2019, 44(5):126-131.
|
[8] |
Ye H, Chen Y, Liu M. Tightly coupled 3d lidar inertial odometry and mapping[C]. Montreal: Proceedings of the International Conference on Robotics and Automation, 2019:3144-3150.
|
[9] |
Zhang J, Singh S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots, 2017, 41(2):401-416.
doi: 10.1007/s10514-016-9548-2
|
[10] |
Shan T, Englot B, Meyers D, et al. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping[C]. Las Vegas: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020:401-416.
|
[11] |
Kaess M, Ranganathan A, Dellaert F. iSAM: Incremental smoothing and mapping[J]. IEEE Transactions on Robotics, 2008, 24(6):1365-1378.
doi: 10.1109/TRO.2008.2006706
|
[12] |
Kaess M, Johannsson H, Roberts R, et al. iSAM2: Incremental smoothing and mapping using the Bayes tree[J]. The International Journal of Robotics Research, 2012, 31(2):216-235.
doi: 10.1177/0278364911430419
|
[13] |
Wang H, Wang C, Xie L. Intensity scan context: Coding intensity and geometry relations for loop closure detection[C]. Paris: Proceedings of the IEEE International Conference on Robotics and Automation, 2020:2095-2101.
|
[14] |
Forster C, Carlone L, Dellaert F, et al. On-manifold preintegration for real-time visual-inertial odometry[J]. IEEE Transactions on Robotics, 2016, 33(1):1-21.
doi: 10.1109/TRO.2016.2597321
|
[15] |
Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm[J]. IEEE Transactions on Information Theory, 2001, 47(2):498-519.
doi: 10.1109/18.910572
|
[16] |
陈文佑, 章伟, 史晓帆, 等. 一种改进ORB特征匹配的半稠密三维重建ORB-SLAM算法[J]. 电子科技, 2021, 34(12):62-67.
|
|
Chen Wenyou, Zhang Wei, Shi Xiaofan, et al. A semi-dense 3D reconstruction ORB-SLAM algorithm with improved ORB feature matching[J]. Electronic Science and Technology, 2021, 34(12):62-67.
|
[17] |
王松波, 李马骁, 李海瑞, 等. 基于三维激光雷达技术的输电线路廊道障碍物检测研究[J]. 电子科技, 2019, 32(4):81-84.
|
|
Wang Songbo, Li Maxiao, Li Hairui, et al. Research on obstacle detection of transmission line corridor based on 3D laser radar technology[J]. Electronic Science and Technology, 2019, 32(4):81-84.
|
[18] |
孙喜亮, 关宏灿, 苏艳军, 等. 面向高精度城市测绘的激光紧耦合SLAM方法[J]. 测绘学报, 2021, 50(11):1585-1593.
doi: 10.11947/j.AGCS.2021.20210243
|
|
Sun Xiliang, Guan Hongcan, Sun Yanjun, et al. A tightly coupled SLAM method for precise urban mapping[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11):1585-1593.
doi: 10.11947/j.AGCS.2021.20210243
|