[1] |
毛志强, 毛志芳, 周文. 风力发电影响综述[J]. 电气工程学报, 2010, 5(5):45-46.
|
|
Mao Zhiqiang, Mao Zhifang, Zhou Wen. Review of the impact of wind power[J]. Journal of Electrical Engineering, 2010, 5(5):45-46.
|
[2] |
颜宏文, 卢格宇. CEEMD-WT和CNN在短期风速预测中的应用研究[J]. 计算机工程与应用, 2018, 54(9):224-230.
doi: 10.3778/j.issn.1002-8331.1612-0256
|
|
Yan Hongwen, Lu Geyu. Application research on complete ensemble empirical mode decomposition,wavelet transform and convolutional neural networks in short-term wind speed forecasting[J]. Computer Engineering and Applications, 2018, 54(9):224-230.
doi: 10.3778/j.issn.1002-8331.1612-0256
|
[3] |
李应求, 安勃, 李恒通. 基于NARX及混沌支持向量机的短期风速预测[J]. 电力系统保护与控制, 2019, 47(23):65-73.
|
|
Li Yingqiu, An Bo, Li Hengtong. Short-term wind speed prediction based on NARX and chaos-support vector machine[J]. Power System Protection and Control, 2019, 47(23):65-73.
|
[4] |
林涛, 刘航鹏, 赵参参, 等. 基于SSA-PSO-ANFIS的短期风速预测研究[J]. 太阳能学报, 2021, 42(3):128-134.
|
|
Lin Tao, Liu Hangpeng, Zhao Shenshen, et al. Short-time wind speed prediction based on SSA-PSO-ANFIS[J]. Acta Energiae Solaris Sinica, 2021, 42(3):128-134.
|
[5] |
丁仁强, 周武能, 程航洋, 等. 基于深度学习框架SSA-BiLSTM网络的风速预测[J]. 计算机与数字工程, 2020, 48(11):2578-2583.
|
|
Ding Renqiang, Zhou Wuneng, Cheng Hangyang, et al. A novel method based on SSA-BiLSTM networks under deep learning framework for wind speed forecasting[J]. Computer & Digital Engineering, 2020, 48(11):2578-2583.
|
[6] |
周楚杰. 基于LSTM和TCN混合深度学习的风速短期预测模型[D]. 兰州: 兰州大学, 2019:19-51.
|
|
Zhou Chujie. A novel hybrid deep learning model for short-term wind speed forecasting based on LSTM and TCN[D]. Lanzhou: Lanzhou University, 2019:19-51.
|
[7] |
段新会, 李文鑫. 基于改进粒子群优化神经网络的超短期风速预测[J]. 自动化与仪表, 2021, 36(3):76-80.
|
|
Duan Xinhui, Li Wenxin. Ultra-short-term wind speed prediction based on improved particle swarm neural network algorithm[J]. Automation & Instrumentation, 2021, 36(3):76-80.
|
[8] |
魏炘, 石强, 符文熹, 等. 考虑CEEMDAN样本熵和SVR的短期风速预测[J]. 水电能源科学, 2020, 38(11):207-210.
|
|
Wei Xin, Shi Qiang, Fu Wenxi, et al. Short-time wind s-peed prediction with CEEMDAN sample entropy and SVR[J]. Water Resources and Power, 2020, 38(11):207-210.
|
[9] |
董雁萍. 支持向量机预测模型的构建及其应用[D]. 西安: 西安理工大学, 2010:20-36.
|
|
Dong Yanping. The establishment and application of support vector machine forecasting model.[D]. Xi'an: Xi'an University of Technology, 2010:20-36.
|
[10] |
Dindar A, Ardehali M M, Vakilian M. Integration of wind turbines in distribution systems and development of an adaptive overcurrent relay coordination scheme with considerations for wind speed forecast uncertainty[J]. IET Renewable Power Generation, 2020, 14(15):2983-2992.
doi: 10.1049/rpg2.v14.15
|
[11] |
金吉, 王斌, 喻敏, 等. Lorenz方程优化EMD分解过程的短期风速预测[J]. 太阳能学报, 2021, 42(6):342-348.
|
|
Jin Ji, Wang Bin, Yu Min, et al. Short-term wind speed prediction based on EMD optimized by Lorenz equation[J]. Acta Eergiae Slaris Snica, 2021, 42(6):342-348.
|
[12] |
付晓波. 经验模态分解法理论研究与应用[D]. 太原: 太原理工大学, 2013:15-27.
|
|
Fu Xiaobo. Research on emprical mode decomposition theory and its application[D]. Taiyuan: Taiyuan University of Technology, 2013:15-27.
|
[13] |
张妍, 王东风, 韩璞. 一种风电场短期风速组合预测模型[J]. 太阳能学报, 2017, 38(6):1510-1516.
|
|
Zhang Yan, Wang Dongfeng, Han Pu. Combination forecasting model of short-term wind speed for wind farms[J]. Acta Energiae Solaris Sinica, 2017, 38(6):1510-1516.
|
[14] |
颜宏文, 邹丹. 基于关联规则的PSO-Elman短期风速预测[J]. 计算机工程与应用, 2017, 53(23):261-266.
doi: 10.3778/j.issn.1002-8331.1607-0186
|
|
Yan Hongwen, Zou Dan. Short-term wind speed foreca-sting based on PAO-Elman optimized by association rule[J]. Computer Engineering and Applications, 2017, 53(23):261-266.
doi: 10.3778/j.issn.1002-8331.1607-0186
|
[15] |
赵仕艳, 谢子殿, 丁康康, 等. 粒子群优化BP-PID的矿井提升机调速系统[J]. 电子科技, 2021, 34(1):43-49.
|
|
Zhao Shiyan, Xie Zidian, Ding Kangkang, et al. Particle swarm optimization BP-PID of rotor variable frequency speed in mine hoisting system[J]. Electronic Science and Technology, 2021, 34(1):43-49.
|
[16] |
房乐楠, 何腾鹏, 刘宇红. 一种改进型PSO算法在SVM参数寻优中的应用[J]. 电子科技, 2018, 31(6):17-19.
|
|
Fang Lenan, He Tengpeng, Liu Yuhong. Application of an improved PSO algorithm in SVM parameter optimization[J]. Electronic Science and Technology, 2018, 31(6):17-19.
|