电子科技 ›› 2023, Vol. 36 ›› Issue (5): 1-8.doi: 10.16180/j.cnki.issn1007-7820.2023.05.001

• •    下一篇

基于EMD-GWO-SVR组合模型的短期风速预测

蔺琳,王万雄   

  1. 甘肃农业大学 理学院,甘肃 兰州 730070
  • 收稿日期:2021-11-01 出版日期:2023-05-15 发布日期:2023-05-17
  • 作者简介:蔺琳(1997-),女,硕士研究生。研究方向:机器学习。|王万雄(1964-),男,博士,教授。研究方向:应用数学与统计。
  • 基金资助:
    国家自然科学基金(11971214)

Short-Term Wind Speed Prediction Based on EMD-GWO-SVR Combined Model

LIN Lin,WANG Wanxiong   

  1. School of Sciences,Gansu Agricultural University,Lanzhou 730070,China
  • Received:2021-11-01 Online:2023-05-15 Published:2023-05-17
  • Supported by:
    National Natural Science Foundation of China(11971214)

摘要:

风速预测对风电场进行调度与控制具有重大意义。针对风速序列的随机性与间歇性,文中提出了EMD-GWO-SVR组合预测模型。先对原始序列进行经验模态分解,并应用GWO算法对支持向量回归模型的参数进行寻优。随后将寻优得到的最佳参数代入支持向量回归模型,并对分解后的本征模函数及残差项分别进行预测,将得到的各预测结果相加从而对风速进行预测。以甘肃省酒泉市的历史气象数据为例,建立BP神经网络、SVR、PSO-SVR、GWO-SVR、EMD-PSO-SVR和EMD-GWO-SVR6种预测模型,对该地的风速进行预测。仿真结果表明,文中提出的EMD-GWO-SVR模型预测精度相比SVR提高了61.759 8%,且其MAE、MAPE和RMSE等误差指标评价值显著低于其它5种模型。

关键词: 风速预测, BP神经网络, 经验模态分解, 粒子群优化算法, GWO算法, 参数寻优, 支持向量回归, 预测精度

Abstract:

Wind speed prediction is of great significance to wind power plant scheduling and control. In view of the randomness and intermittence of wind speed series, an EMD-GWO-SVR combined prediction model is proposed in this study. Empirical mode decomposition is performed on the original sequence, and grey wolf optimization algorithm is used to optimize the parameters of the support vector regression model. Then, the optimized parameters are substituted into the support vector regression model, and the decomposed eigenmode function and residual term are predicted, respectively. The predicted results are added together to predict the wind speed. Taking the historical meteorological data of Jiuquan in Gansu province as an example, six forecasting models including BP neural network, SVR, PSO-SVR, GWO-SVR, EMD-PSO-SVR and EMD-GWO-SVR, are established to forecast the wind speed. The simulation results show that the prediction accuracy of the proposed EMD-GWO-SVR model is 61.759 8% higher than that of SVR, and the evaluation values of MAE, MAPE and RMSE error indexes are significantly lower than those of the other five models.

Key words: wind speed forecasting, BP neural network, empirical mode decomposition, particle swarm optimization algorithm, GWO algorithm, parameter optimization, support vector regression, prediction accuracy

中图分类号: 

  • TP181