[1] |
Jin Y, Wang H, Chugh T, et al. Data-driven evolutionary optimization:An overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(3):442-458.
doi: 10.1109/TEVC.2018.2869001
|
[2] |
Lian Y, Liou M S. Multi-objective optimization using coupled response surface model and evolutionary algorithm[J]. Aeronautics and Space Flight, 2005, 43(6):1316-1325.
|
[3] |
蓝机满. 基于径向基神经网络的粒子群表面缺陷识别算法[J]. 电子科技, 2019, 32(5):92-95.
|
|
Lan Jiman. Particle swarm optimization surface defect recognition algorithm based on radial basis neural network[J]. Electronic Science and Technology, 2019, 32(5):92-95.
|
[4] |
王丽娟, 丁世飞. 一种粒子群优化的SVM-ELM模型[J]. 计算机科学与探索, 2019, 13(4):657- 665.
doi: 10.3778/j.issn.1673-9418.1806015
|
|
Wang Lijuan, Ding Shifei. SVM-ELM model based on particle swarm optimization[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4):657-665.
doi: 10.3778/j.issn.1673-9418.1806015
|
[5] |
Ginsbourger D, Le Riche R, Carraro L. Kriging is well-suited to parallelize optimization[M]. Heidelberg:Springer, 2010.
|
[6] |
Chugh T, Jin Y, Miettinen K, et al. A surrogate assisted reference vector guided evolutionary algorithm for computationally expensive many objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1):129-142.
doi: 10.1109/TEVC.2016.2622301
|
[7] |
朱苗苗, 潘伟杰, 刘翔, 等. 基于BP神经网络代理模型的交互式遗传算法[J]. 计算机工程与应用, 2020, 56(2):146-151.
doi: 10.3778/j.issn.1002-8331.1810-0089
|
|
Zhu Miaomiao, Pan Weijie, Liu Xiang, et al. Interactive genetic algorithm based on BP neural network and user cognitive surrogate model[J]. Computer Engineering and Applications, 2020, 56(2):146-151.
doi: 10.3778/j.issn.1002-8331.1810-0089
|
[8] |
Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50-79.
doi: 10.1016/j.paerosci.2008.11.001
|
[9] |
Wang X L, Jin Y C, Sebastian S, et al. An adaptive bayesian approach to surrogate assisted evolutionary multi-objective optimization[J]. Information Sciences, 2020, 51(9):317-331.
|
[10] |
Ruan X R, Li K, Derbel B, et al. Surrogate assisted evolutionary algorithm for medium scale multi-objective optimization problems[C]. New York: Proceedings of the Genetic and Evolutionary Computation Conference, 2020.
|
[11] |
Zhou Z, Ong Y S, Nair P B, et al. Combining global and local surrogate models to accelerate evolutionary optimization[J]. IEEE Transactions on Systems,Man,and Cybernetics Part C, 2006, 37(1):66-76.
doi: 10.1109/TSMCC.2005.855506
|
[12] |
Han Z H, Zhang K S. Surrogate-based optimization[J]. Real-World Applications of Genetic Algorithms, 2012, 34(3):1-12.
|
[13] |
Guo D, Jin Y, Ding J, et al. Heterogeneousensemble-based infill criterion for evolutionary multi-objective optimization of expensive problems[J]. IEEE Transactions on Cybernetics, 2018, 49(3):1012-1025.
doi: 10.1109/TCYB.2018.2794503
|
[14] |
Knowles J. ParEGO:A hybrid algorithm with on-line landscape approximation for expensive multi-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1):50-66.
doi: 10.1109/TEVC.2005.851274
|
[15] |
Zhang Q, Liu W, Tsang E, et al. Expensive multi-objective optimization by MOEA/D with gaussian process model[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(3):456-474.
doi: 10.1109/TEVC.2009.2033671
|
[16] |
Liu B, Zhang Q, Gielen G G E. A gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(2):180-192.
doi: 10.1109/TEVC.2013.2248012
|
[17] |
Singh H K, Ray T, Smith W. Surrogate assisted simulated annealing (SASA) for constrained multi-objective optimization[C]. Barcelona: Proceedings of the IEEE Congress on Evolutionary Computation, 2010.
|
[18] |
Couckuyt I, Deschrijver D, Dhaene T. Fast calculation of multi-objective probability of improvement and expected improvement criteria for Pareto optimization[J]. Journal of Global Optimization, 2014, 60(3):575-594.
doi: 10.1007/s10898-013-0118-2
|
[19] |
Tian J, Tan Y, Zeng J, et al. Multi-objective infill criterion driven gaussian process-assisted particle swarm optimization of high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(3):459-472.
doi: 10.1109/TEVC.2018.2869247
|
[20] |
Fan C D, Hou B, Zheng J H, et al. A surrogate-assisted particle swarm optimization using ensemble learning forexpensive problems with small sample datasets[J]. Applied Soft Computing, 2020, 9(1):1-17.
doi: 10.1016/j.asoc.2008.05.006
|
[21] |
Wang H, Jin Y, Doherty J. Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems[J]. IEEE Transactions on Cybernetics, 2017, 47(9):2664-2677.
doi: 10.1109/TCYB.2017.2710978
pmid: 28650832
|
[22] |
Kennedy J, Eberhart R. Particle swarm optimization[C]. Perth:Proceedings of the ICNN'95-IEEE International Conference on Neural Networks,1995.
|
[23] |
Krige D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6):119-139.
|
[24] |
Hardy R L. Multi-quadric equations of topography and other irregular surfaces[J]. Journal of Geophysical Research, 1971, 76(8):1905-1915.
doi: 10.1029/JB076i008p01905
|
[25] |
Park J S. Optimal latin-hypercube designs for computer experiments[J]. Journal of Statistical Planning and Inference, 1994, 39(1):95-111.
doi: 10.1016/0378-3758(94)90115-5
|
[26] |
陈万芬, 王宇嘉, 林炜星. 异构集成代理辅助多目标粒子群优化算法[J]. 计算机工程与应用, 2021, 57(12):77-85.
|
|
Chen Wanfen, Wang Yujia, Lin Weixin. Heterogeneous ensemble surrogate assisted multi objective particle swarm optimization algorithm[J]. Computer Engineering and Applications, 2021, 57(12):77-85.
|
[27] |
Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
doi: 10.1023/A:1008306431147
|
[28] |
Deb K, Thiele L, Laumanns M, et al. Scalable multi-objective optimization test problems[C]. Honolulu: Proceedings of the Congress on Evolutionary Computation, 2002.
|
[29] |
Sierra M R, Coello C A C. Improving PSO based multi objective optimization using crowding, mutation and ε-dominance evolutionary multi criterion optimization[C]. Heidelberg: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2005.
|
[30] |
Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based non- dominated sorting approach, part I:Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4):577-601.
doi: 10.1109/TEVC.2013.2281535
|
[31] |
Van Veldhuizen D A, Lamont G B. Multi-objective evolutionary algorithm research:A history and analysis[J]. Evolutionary Computation, 1998, 8(2):125-147.
doi: 10.1162/106365600568158
|
[32] |
Schott J R. Fault tolerant design using single and multi-criteria genetic algorithm optimization[M]. Cambridge: Massachusetts Institute of Technology, 1995.
|
[33] |
While L, Hingston P, Barone L, et al. A faster algorithm for calculating hyper-volume[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1):29-38.
doi: 10.1109/TEVC.2005.851275
|