电子科技 ›› 2022, Vol. 35 ›› Issue (12): 26-34.doi: 10.16180/j.cnki.issn1007-7820.2022.12.004

• • 上一篇    下一篇

组合加点准则的代理辅助多目标粒子群优化

陈万芬,王宇嘉,林炜星   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2021-05-06 出版日期:2022-12-15 发布日期:2022-12-13
  • 作者简介:陈万芬(1995-),女,硕士研究生。研究方向:代理模型、多目标智能优化算法。|王宇嘉(1979-),女,博士,副教授。研究方向:进化计算、多目标优化。|林炜星(1995-),男,硕士研究生。研究方向:多目标进化算法。
  • 基金资助:
    国家自然科学基金(61403249)

Surrogate Assisted Multi-Objective Particle Swarm Optimization Based on Combined Infill Sampling Criterion

CHEN Wanfen,WANG Yujia,LIN Weixing   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science, Shanghai 201620,China
  • Received:2021-05-06 Online:2022-12-15 Published:2022-12-13
  • Supported by:
    National Natural Science Foundation of China(61403249)

摘要:

针对小样本数据构建代理模型初期优化效率低、模型精度差的问题,文中提出组合加点准则的代理辅助多目标粒子群优化算法。该算法通过加权平均法将Kriging模型和径向基函数网络模型组合成异构集成模型,使用改善期望准则和最小化代理模型预测准则相结合的组合加点准则对代理模型进行管理,加快了模型收敛速度。此外,该算法采用实际目标函数对每次迭代中增加的样本点进行评估,并对代理模型进行更新以增加模型准确性。实验结果表明,在适应度函数评估次数上,所提算法与非代理模型算法相比减少了10倍,证明该算法可提高代理模型的优化效率及准确性,并在勘探与开发之间取得了更好的平衡。

关键词: 代理模型, Kriging模型, 径向基函数网络模型, 异构集成, 组合加点准则, 适应度函数评估, 模型管理, 多目标粒子群优化算法

Abstract:

In view of the problem of low initial optimization efficiency and poor model accuracy when constructing surrogate models with small sample data, a surrogate-assisted multi-objective particle swarm optimization algorithm based on the combined infill sampling criterion is proposed in this study. The algorithm combines the Kriging model and the radial basis function network model into a heterogeneous ensemble model through the weighted average method, and uses the combined infill sampling criterion of the improved expectation criterion and the minimum surrogate model prediction criterion to manage the surrogate model to speed up the convergence of the model. In addition, the proposed algorithm adopts the actual objective function to evaluate the sample points added in each iteration, and updates the surrogate model to increase the model accuracy. The experimental results show that compared with the non-surrogate model algorithm, the proposed algorithm reduces the evaluation times of the fitness function by 10 times, which proves that the proposed algorithm can improve the optimization efficiency and accuracy of the surrogate model, and achieve a better balance between exploration and development.

Key words: surrogate model, Kriging model, radial basis function network model, heterogeneous ensemble, combined infill sampling criterion, fitness function evaluation, model management, multi-objective particle swarm optimization algorithm

中图分类号: 

  • TP18