[1] |
Matijaŝ M, Suykens J A K, Krajcar S. Load forecasting using a multivariate meta-learning system[J]. Expert Systems with Applications, 2013, 40(11):4427-4437.
doi: 10.1016/j.eswa.2013.01.047
|
[2] |
Ismail Z, Yahya A, Mahpol. Forecasting peak load electricity demand using statistics and rule based approac[J]. American Journal of Applied Sciences, 2009, 6(8):1618-1625.
doi: 10.3844/ajassp.2009.1618.1625
|
[3] |
Mordjaoui M, Boudjema B. Forecasting andmodelling electricity demand using anfis predictor[J]. Journal of Mathematics and Statistics, 2011, 7(4):275-281.
doi: 10.3844/jmssp.2011.275.281
|
[4] |
朱素玲. 组合预测中单项模型选择的研究及其权重系数优化[D]. 兰州: 兰州大学, 2010.
|
|
Zhu Suling. The single model chosen and parameters optimization for combined forecasting model[D]. Lanzhou: Lanzhou University, 2010.
|
[5] |
白朝阳, 宋林杰, 李晓琳. 基于EMD-PSO-LSSVR的物料需求组合预测模型[J]. 统计与决策, 2018, 34(18):185-188.
|
|
Bai Zhaoyang, Song Linjie, Li Xiaolin. Combination forecast model of material demand based on EMD-PSO-LSSVR[J]. Statistics & Decision, 2018, 34(18):185-188.
|
[6] |
何永秀, 王跃锦, 杨丽芳, 等. 基于最小二乘支持向量机的居民用电预测研究[J]. 电力需求侧管理, 2010, 12(3):19-23.
|
|
He Yongxiu, Wang Yuejin, Yang Lifang, et al. Research on residential electricity prediction based on the least squares support vector machine[J]. Power Demand Side Management, 2010, 12(3):19-23.
|
[7] |
杨晨蕾, 包腾飞, 胡安玉, 等. 考虑残差的小波G-Verhulst-ARIMA大坝变形组合预测模型及应用[J]. 水电能源科学, 2020, 38(12):94-97.
|
|
Yang Chenlei, Bao Tengfei, Hu Anyu, et al. Wavelet G-Verhulst-ARIMA combined prediction model for dam deformation considering residual and its application[J]. Water Resources and Power, 2010, 38(12):94-97.
|
[8] |
王相宁, 杨杰. 基于SSA-ARIMA-HPSO-SVM组合模型的汇率预测[J]. 统计与决策, 2020, 36(23):134-138.
|
|
Wang Xiangning, Yang Jie. Exchange rate forecast based on SSA-ARIMA-HPSO-SVM combined model[J]. Statistics & Decision, 2020, 36(23):134-138.
|
[9] |
王旭东. 基于深度学习的短期家庭电力需求预测[D]. 杭州: 中国计量大学, 2019.
|
|
Wang Xudong. Short-termhousehold electricity demand forecasting based on deep learning[D]. Hangzhou: China Jiliang University, 2019.
|
[10] |
沈放, 吴静进, 谢风连. 基于小波神经网络方法的电力需求预测[J]. 电网与清洁能源, 2017, 33(7):90-96.
|
|
Shen Fang, Wu Jingjin, Xie Fenglian. Electricpower demand forecasting based on wavelet neural network method[J]. Power System and Clean Energy, 2017, 33(7):90-96.
|
[11] |
周德强, 武本令. 灰色BP神经网络模型的优化及负荷预测[J]. 电力系统保护与控制, 2011, 39(21):65-69.
|
|
Zhou Deqiang, Wu Benling. Optimization and power load forecasting of gray BP neural network model[J]. Power System Protection and Control, 2011, 39(21):65-69.
|
[12] |
杨海柱, 江昭阳, 李梦龙, 等. 基于改进人工鱼群-蛙跳算法优化LSSVM参数短期负荷预测[J]. 电子科技, 2020, 33(12):67-74.
|
|
Yang Haizhu, Jiang Zhaoyang, Li Menglong, et al. Parameters selection for LSSVM based on artificial fish swarm-shuffled frog jump algorithms optimization in short-term load forecasting[J]. Electronic Science and Technology, 2020, 33(12):67-74.
|
[13] |
王檬. 我国PMI指数预测—基于SARIMA模型[J]. 统计与管理, 2015(9):60-61.
|
|
Wang Meng. Prediction of China PMI index-based on SARIMA model[J]. Statistics and Management, 2015(9):60-61.
|
[14] |
Vapnik V N. Support vector method for function estimation[J]. Advances in Neural Information Processing Systems, 2001(9):281-287.
|
[15] |
杨宇, 曾国辉, 黄勃. 基于人工鱼群算法和LS_SVM的变压器故障诊断[J]. 电子科技, 2020, 33(11):36-40.
|
|
Yang Yu, Zeng Guohui, Huang Bo. A transformer fault diagnosis method integrating artificial fish swarm algorithm with least square support vector machine[J]. Electronic Science and Technology, 2020, 33(11):36-40.
|
[16] |
林浩, 李雷孝, 王慧. 支持向量机在智能交通系统中的研究应用综述[J]. 计算机科学与探索, 2020, 14(6):901-917.
|
|
Lin Hao, Li Leixiao, Wang Hui. Survey on research and application of support vector machines in intelligent transportation system[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6):901-917.
|
[17] |
Sousa J C, Jorge H M, Neves L P. Short-term load forecasting based on support vector regression and load profiling[J]. International Journal of Energy Research, 2014, 38(3):350-362.
doi: 10.1002/er.3048
|
[18] |
程诗尧, 武赫. 基于Holt-Winters和LSTM的组合模型在电能表需求预测中的应用[J]. 中国设备工程, 2020(15):207-209.
|
|
Cheng Shiyao, Wu He. Application of combined model based on Holt-Winters and LSTM in demand forecast of electric energy meter[J]. China Plant Engineering, 2020(15):207-209.
|
[19] |
Sun Y Y, Guo L L, Wang Y M, et al. The comparison of optimizing SVM by GA and grid search[C]. Yangzhou:Proceedings of the Thirteenth IEEE International Conference on Electronic Measurement & Instruments, 2017.
|
[20] |
纪洁, 胡汉, 高远, 等. 基于遗传算法优化参数的支持向量机风电功率预测[J]. 电子测试, 2020(21):32-35.
|
|
Ji Jie, Hu Han, Gao Yuan, et al. The wind power prediction based on the genetic algorithm to optimize parameters of support vector machine[J]. Electronic Test, 2020(21):32-35.
|
[21] |
颜晓娟, 龚仁喜. 基于改进遗传算法寻优的SVM风能短期功率预测[J]. 电测与仪表, 2014, 51(8):38-41.
|
|
Yan Xiaojuan, Gong Renxi. Short-term wind power prediction based on SVM and improved genetic algorithm[J]. Electrical Measurement& Instrumentation, 2014, 51(8):38-41.
|