电子科技 ›› 2022, Vol. 35 ›› Issue (8): 66-72.doi: 10.16180/j.cnki.issn1007-7820.2022.08.011

• • 上一篇    下一篇

复杂环境下弓网接触位置动态监测方法研究

张乔木1,钟倩文1,孙明2,罗文成3,柴晓冬1   

  1. 1.上海工程技术大学 城市轨道交通学院,上海201620
    2.上海申通地铁维护保障公司 供电分公司,上海200031
    3.常州路航轨道交通科技有限公司,江苏 常州213164
  • 收稿日期:2021-02-16 出版日期:2022-08-15 发布日期:2022-08-10
  • 作者简介:张乔木(1994-),男,硕士研究生。研究方向:图像处理、目标检测。|钟倩文(1986-),女,博士,讲师。研究方向:轨道车辆智能检测及数据挖掘技术。
  • 基金资助:
    国家自然科学基金(51975347)

Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment

ZHANG Qiaomu1,ZHONG Qianwen1,SUN Ming2,LUO Wencheng3,CHAI Xiaodong1   

  1. 1. School of Urban Railway Transportation,Shanghai University of Engineering Science, Shanghai 201620,China
    2. Power Supply Branch, Shanghai Shentong Metro Maintenance Company, Shanghai 200031,China
    3. Changzhou Luhang Rail Transit Technology Co.,Ltd.,Changzhou 213164,China
  • Received:2021-02-16 Online:2022-08-15 Published:2022-08-10
  • Supported by:
    National Natural Science Foundation of China(51975347)

摘要:

针对高速列车受电弓在经过支架桥洞的复杂环境下检测效率低的问题,文中提出一种复杂环境下弓网接触位置动态监测方法。为了得到原始训练数据集,对受电弓视频采用帧间差抓取。利用深度学习网络PSPNet对图片语义分割出接触线和受电弓,并以此构成具有更明显的弓网接触点的特征数据集。为了得到相对坐标,运用改进的YOLOv4进行训练和检测。结果表明,该方法能有效地在每一帧图像中精确标记出受电弓与接触网的接触点位置,并能够在列车通过支柱架以及桥梁的情况下对受电弓的运动状态进行捕捉并输出相对坐标位置,从而达到对受电弓的监测目的,其精度可达96.8%。

关键词: 受电弓监测, 特征提取, 特征数据集, 语义分割, 目标追踪, 深度学习, PSPNet, YOLOv4

Abstract:

In view of the problem of low detection efficiency of high-speed train pantograph in the complex environment of passing through the support bridge tunnel, a dynamic monitoring method of the pantograph-net contact position under complex environment is proposed. In order to obtain the original training data set, the pantograph video is captured by frame difference. The deep learning network PSPNet is used to semantically segment the contact line and the pantograph of the image, which is used to construct the feature data set with more obvious contact points of pantograph. To obtain the coordinates, the improved YOLOv4 is used for training and detection. The results show that the proposed method can effectively mark the contact point position between pantograph and catenary in each frame image, and can capture the movement state of pantograph and output the relative coordinate position when the train passes through the support frame and bridge, so as to achieve the monitoring purpose of pantograph, and the detection accuracy of the proposed method can reach 96.8%.

Key words: pantograph monitoring, feature extraction, feature data set, semantic segmentation, objection tracking, deep learning, PSPNet, YOLOv4

中图分类号: 

  • TP391.41