电子科技 ›› 2022, Vol. 35 ›› Issue (8): 53-57.doi: 10.16180/j.cnki.issn1007-7820.2022.08.009

• • 上一篇    下一篇

基于图像处理的轨旁信号机识别方法

冯俊逸1,沈拓1,2,张轩雄1   

  1. 1.上海理工大学 光电信息与计算机工程学院,上海 200093
    2.同济大学 上海市轨道交通结构耐久与系统安全重点实验室,上海 201804
  • 收稿日期:2021-03-09 出版日期:2022-08-15 发布日期:2022-08-10
  • 作者简介:冯俊逸(1997-),男,硕士研究生。研究方向:图像处理。|张轩雄(1963-),男,博士,教授。研究方向:电子机械系统。
  • 基金资助:
    国家自然科学基金(U1734211)

Trackside Signal Light Recognition Based on Image Processing

FENG Junyi1,SHEN Tuo1,2,ZHANG Xuanxiong1   

  1. 1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
    2. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety,Tongji University,Shanghai 201804,China
  • Received:2021-03-09 Online:2022-08-15 Published:2022-08-10
  • Supported by:
    National Natural Science Foundation of China(U1734211)

摘要:

信号机是用于指挥列车运行的重要信号设备。为了进一步保障行车安全,文中提出了一种基于图像处理的准确定位轨旁信号机并识别其颜色信号的方法。该方法根据先验值提取ROI,对ROI图像在RGB色彩空间进行颜色分割以剔除无关背景干扰,同时利用形态学处理降噪。对处理后的图像进行霍夫圆变换来提取信号机的候选圆,并根据信号机位于轨道右侧的位置特点定位出指挥当前轨道列车运行的信号机,然后通过分析定位出的信号机区域内的像素值信息来识别其颜色信号。实验结果表明,该方法能精确定位和识别轨旁信号机,对单一红、黄、绿3种颜色的信号识别率分别为91.42%、85.00%和94.29%。

关键词: 轨旁信号机, 图像处理, 颜色分割, 形态学处理, 边缘检测, 轨道定位, 霍夫变换, 信号机识别

Abstract:

The trackside signal light is one of the important components for prompt train operation. In order to ensure train operation safety, a method based on image processing technique is proposed to effectively locate the trackside signal light and identify its color information. The trackside signal light ROI is extracted through the empirical value, and then the color segmentation is carried out to the ROI in the RGB color space to avoid the influence of irrelevant background, and remaining noise is removed through morphology processing. Hough-circle transform is performed on the processed image for the extracted candidate region of signal light, and the operating trackside signal light related to the running train is located according to the position characteristics between the signal light and the track. The pixel value information in the signal light area is analyzed for signal color recognition. The experimental results indicate that the method can precisely locate and recognize trackside signals, and the color correction ratio is 91.42% for red, 85.00% for yellow, and 94.29% for green, respectively.

Key words: trackside signal light, image processing, morphology processing, color segmentation, edge detection, rail location, Hough transform, signal light recognition

中图分类号: 

  • TP391